
The fontspec package
Font selection for XƎLATEX and LuaLATEX

WILL ROBERTSON
With contributions by Khaled Hosny,

Philipp Gesang, Joseph Wright, and others.
http://latex3.github.io/fontspec/

2024/04/27 v2.9b

Contents

I Getting started 5

1 History 5

2 Introduction 5
2.1 Acknowledgements . 5

3 Package loading and options 6
3.1 Font encodings . 6
3.2 Maths fonts adjustments . 6
3.3 Configuration . 6
3.4 Warnings . 7

4 Interaction with LATEX2ε and other packages 7
4.1 Commands for old-style and lining numbers 7
4.2 Italic small caps . 7
4.3 Emphasis and nested emphasis . 7
4.4 Strong emphasis . 7

II General font selection 9

1 Main commands 9

2 Font selection 10
2.1 By font name . 10
2.2 By file name . 11
2.3 By custom file name using a .fontspec file 12
2.4 Querying whether a font ‘exists’ . 13

1

http://latex3.github.io/fontspec/

3 Commands to select font families 14

4 Commands to select single font faces 14
4.1 More control over font shape selection . 15
4.2 Specifically choosing the NFSS family . 17
4.3 Choosing additional NFSS font faces . 18
4.4 Math(s) fonts . 19

5 Miscellaneous font selecting details 20

III Selecting font features 21

1 Default settings 21

2 Working with the currently selected features 22
2.1 Priority of feature selection . 23

3 Different features for different font shapes 23

4 Selecting fonts from TrueType Collections (TTC files) 24

5 Different features for different font sizes 24

6 Font independent options 26
6.1 Colour . 26
6.2 Scale . 28
6.3 Interword space . 29
6.4 Post-punctuation space . 29
6.5 The hyphenation character . 29
6.6 Optical font sizes . 31
6.7 Font transformations . 31
6.8 Letter spacing . 33

7 Variable fonts 33
7.1 Optical font sizes . 33
7.2 Weight . 34
7.3 Width . 34
7.4 Slant . 34
7.5 Other axes . 34
7.6 Instances . 35

IV OpenType 36

1 Introduction 36
1.1 How to select font features . 36
1.2 How do I know what font features are supported by my fonts? 37

2 OpenType scripts and languages 38

2

2.1 Script and Language examples . 38

3 OpenType font features 41
3.1 Tag-based features . 41
3.2 CJK features . 51

V Commands for accents and symbols (‘encodings’) 55

1 A new Unicode-based encoding from scratch 55

2 Adjusting a pre-existing encoding 56

3 Summary of commands 58

VI LuaTEX-only font features 59

1 Different font technologies and shapers 59

2 Custom font features 59

VII Fonts and features with XƎTEX 61

1 XƎTEX-only font features 61
1.1 Mapping . 61
1.2 Different font technologies: AAT, OpenType, and Graphite 61
1.3 Vertical typesetting . 62

2 The Graphite renderer 62

3 macOS’s AAT fonts 62
3.1 Ligatures . 63
3.2 Letters . 63
3.3 Numbers . 63
3.4 Contextuals . 63
3.5 Vertical position . 63
3.6 Fractions . 63
3.7 Variants . 64
3.8 Alternates . 64
3.9 Style . 64
3.10 CJK shape . 64
3.11 Character width . 64
3.12 Diacritics . 64
3.13 Annotation . 65

3

VIII Customisation and programming interface 66

1 Defining new features 66

2 Defining new scripts and languages 67

3 Going behind fontspec’s back 67

4 Renaming existing features & options 68

5 Programming interface 68
5.1 Variables . 68
5.2 Functions for loading new fonts and families 69
5.3 Conditionals . 69

4

Part I

Getting started
1 History
This package began life as a LATEX interface to select system-installed macOS fonts in
Jonathan Kew’s XƎTEX, the first widely-used Unicode extension to TEX. Over time, XƎTEX
was extended to support OpenType fonts and then was ported into a cross-platform pro-
gram to run also on Windows and Linux.

More recently, LuaTEX is fast becoming the TEX engine of the day; it supports Uni-
code encodings and OpenType fonts and opens up the internals of TEX via the Lua pro-
gramming language. Hans Hagen’s ConTEXt Mk. IV is a re-write of his powerful typeset-
ting system, taking full advantage of LuaTEX’s features including font support; a kernel
of his work in this area has been extracted to be useful for other TEX macro systems as
well, and this has enabled fontspec to be adapted for LATEX when run with the LuaTEX
engine.

2 Introduction
The fontspec package allows users of either XƎTEX or LuaTEX to load OpenType fonts in
a LATEX document. No font installation is necessary, and font features can be selected and
used as desired throughout the document.

Without fontspec, it is necessary to write cumbersome font definition files for LATEX,
since LATEX’s font selection scheme (known as the ‘NFSS’) has a lot going on behind the
scenes to allow easy commands like \emph or \bfseries. With an uncountable number
of fonts now available for use, however, it becomes less desirable to have to write these
font definition (.fd) files for every font one wishes to use.

Because fontspec is designed towork in a variety of modes, this user documentation
is split into separate sections that are designed to be relatively independent. Nonetheless,
the basic functionality all behaves in the same way, so previous users of fontspec under
XƎTEX should have little or no difficulty switching over to LuaTEX.

This manual can get rather in-depth, as there are a lot of details to cover. See the doc-
uments fontspec-example.tex for a complete minimal example to get started quickly.

2.1 Acknowledgements
This package could not have been possible without the early and continued support the
author of XƎTEX, Jonathan Kew. When I started this package, he steered me many times
in the right direction.

I’ve had great feedback over the years on feature requests, documentation queries,
bug reports, font suggestions, and so on from lots of people all around the world. Many
thanks to you all.

Thanks to David Perry andMarkus Böhning for numerous documentation improve-
ments and David Perry again for contributing the text for one of the sections of this man-
ual.

5

Special thanks to Khaled Hosny, who was the driving force behind the support for
LuaLATEX, ultimately leading to version 2.0 of the package.

3 Package loading and options
For basic use, no package options are required:

\usepackage{fontspec}

Package options will be introduced below; some preliminary details are discussed first.
Package options are setupwith the in-built LATEX keyval options handler. This means that
the package can be loaded more than once with different options without triggering an
option clash error. The config and no-config option must be used in the first loadingconfig

no-config and are ignored later.

3.1 Font encodings
The package switches the NFSS font encoding to TU. TU is a new Unicode font encod-
ing, intended for both XƎTEX and LuaTEX engines, and automatically contains support
for symbols covered by LATEX’s traditional T1 and TS1 font encodings (for example, \%,
\textbullet, \"u, and so on). Some additional features are provided by fontspec to cus-
tomise some encoding details; see Part V on page 55 for further details.

Pre-2017 behaviour is now obsolete. The euenc and tuenc package options are ig-euenc
tuenc nored. Package authors anduserswho have referred explicitly to the encoding names EU1

or EU2 should update their code or documents. (See internal variable names described
in Section 5 on page 68 for how to do this properly.)

3.2 Maths fonts adjustments
By default, fontspec adjusts LATEX’s default maths setup in order to maintain the cor-
rect Computer Modern symbols when the roman font changes. However, it will attempt
to avoid doing this if another maths font package is loaded (such as mathpazo or the
unicode-math package).

If you find that fontspec is incorrectly changing the maths font when it shouldn’t be,
apply the no-math package option to manually suppress its behaviour here.no-math

3.3 Configuration
If you wish to customise any part of the fontspec interface, this should be done by cre-
ating your own fontspec.cfg file, which will be automatically loaded if it is found by
XƎTEX or LuaTEX. A fontspec.cfg file is distributed with fontspec with a small number
of defaults set up within it.

To customise fontspec to your liking, use the standard .cfg file as a starting point or
write your own from scratch, then either place it in the same folder as themain document
for isolated cases, or in a location that XƎTEX or LuaTEX searches by default; e.g. inMacTEX:
~/Library/texmf/tex/latex/.

The package option no-config will suppress the loading of the fontspec.cfg fileno-config

6

under all circumstances. Both options must be used the first time fontspec is loaded and
are ignored in later calls.

3.4 Warnings
This package can give some warnings that can be harmless if you know what you’re
doing. Use the quiet package option to write these warnings to the transcript (.log) filequiet
instead.

Use the silent package option to completely suppress these warnings if you don’tsilent
even want the .log file cluttered up.

Both options can also be used with \Setkeys in the document. Use the verboseverbose
option to get activate the warnings again.

4 Interaction with LATEX2ε and other packages
This section documents some areas of adjustment that fontspecmakes to improve default
behaviour with LATEX2ε and third-party packages.

4.1 Commands for old-style and lining numbers
LATEX’s definition of \oldstylenums relies on strange font encodings. We provide a\oldstylenums

\liningnums fontspec-compatible alternative and while we’re at it also throw in the reverse option
as well. Use \oldstylenums{⟨text⟩} to explicitly use old-style (or lowercase) numbers in
⟨text⟩, and the reverse for \liningnums{⟨text⟩}.

4.2 Italic small caps
Support now provided by LATEX2ε in 2020.

4.3 Emphasis and nested emphasis
Support now provided by LATEX2ε in 2020.

4.4 Strong emphasis
The \strong macro is used analogously to \emph but produces variations in weight. If\strong

\strongenv you need it in environment form, use \begin{strongenv}...\end{strongenv}.
As with emphasis, this font-switching command is intended to move through a

range of font weights. For example, if the fonts are set up correctly it allows usage such as
\strong{...\strong{...}} in which each nested \strong macro increases the weight
of the font.

Currently this feature set is somewhat experimental and there is no syntactic sugar\strongfontdeclare
to easily define a range of font weights using fontspec commands. Use, say, the following
to define first bold and then black (k) font faces for \strong:

\strongfontdeclare{\bfseries,\fontseries{k}\selectfont}

7

If too many levels of \strong are reached, \strongreset is inserted. By default this\strongreset
is a no-op and the fontwill simply remain the same.Use \renewcommand\strongreset{\mdseries}
to start again from the beginning if desired.

An example for setting up a font family for use with \strong is discussed in 4.3.1
on page 19.

8

Part II

General font selection
1 Main commands
This section concerns the variety of commands that can be used to select fonts.

\setmainfont{⟨font⟩}[⟨font features⟩]
\setsansfont{⟨font⟩}[⟨font features⟩]
\setmonofont{⟨font⟩}[⟨font features⟩]

These are the main font-selecting commands of this package which select the stan-
dard fonts used in a document, as shown in Example 1. Here, the scales of the fonts have
been chosen to equalise their lowercase letter heights. The Scale font feature will be dis-
cussed further in Section 6 on page 26, including methods for automatic scaling. Note
that further optionsmay need to be added to select appropriate bold/italic fonts, but this
shows the main idea.

Note that while these commands all look and behave largely identically, the de-
fault setup for font loading automatically adds the Ligatures=TeX feature for the
\setmainfont and \setsansfont commands. These defaults (and further customisa-
tions possible) are discussed in Section 1 on page 21.

\newfontfamily⟨cmd⟩{⟨font⟩}[⟨font features⟩]
\setfontfamily⟨cmd⟩{⟨font⟩}[⟨font features⟩]
\renewfontfamily⟨cmd⟩{⟨font⟩}[⟨font features⟩]
\providefontfamily⟨cmd⟩{⟨font⟩}[⟨font features⟩]

These commands define new font family commands (like \rmfamily). The new com-
mand checks if ⟨cmd⟩ has been defined, and issues an error if so. The renew command
checks if ⟨cmd⟩ has been defined, and issues an error if not. The provide command checks
if ⟨cmd⟩ has been defined, and silently aborts if so. The set command never checks; use
at your own risk.

\fontspec{⟨font⟩}[⟨font features⟩]
The plain \fontspec command is not generally recommended for document use. It

is an ad hoc command best suited for testing and loading fonts on a one-off basis.
All of the commands listed above accept comma-separated ⟨font feature⟩=⟨option⟩

lists; these are described later:

• For general font features, see Section 6 on page 26

• For OpenType fonts, see Part IV on page 36

• For XƎTEX-only general font features, see Part VII on page 61

• For LuaTEX-only general font features, see Part VI on page 59

• For features for AAT fonts in XƎTEX, see Section 3 on page 62

9

Example 1: Loading the default, sans serif, and monospaced fonts.

Pack my box with five dozen liquor jugs
Pack my box with five dozen liquor jugs
Pack my box with five dozen liquor jugs

\setmainfont{texgyrebonum-regular.otf}
\setsansfont{lmsans10-regular.otf}[Scale=MatchLowercase]
\setmonofont{Inconsolatazi4-Regular.otf}[Scale=MatchLowercase]

\rmfamily Pack my box with five dozen liquor jugs\par
\sffamily Pack my box with five dozen liquor jugs\par
\ttfamily Pack my box with five dozen liquor jugs

2 Font selection
In both LuaTEX and XƎTEX, fonts can be selected (using the ⟨font⟩ argument in Section 1)
either by ‘font name’ or by ‘file name’, but there are some differences in how each engine
finds and selects fonts — don’t be too surprised if a font invocation in one engine needs
correction to work in the other.

2.1 By font name
Fonts known to LuaTEX or XƎTEX may be loaded by their standard names as you’d speak
them out loud, such as Times New Roman or Adobe Garamond. ‘Known to’ in this case
generallymeans ‘exists in a standard fonts location’ such as ~/Library/Fonts onmacOS,
or C:\Windows\Fonts on Windows. In LuaTEX, fonts found in the TEXMF tree can also be
loaded by name. In XƎTEX, fonts found in the TEXMF tree can be loaded in Windows and
Linux, but not on macOS.

The simplest example might be something like

\setmainfont{Cambria}[...]

in which the bold and italic fonts will be found automatically (if they exist) and are
immediately accessible with the usual \textit and \textbf commands.

The ‘font name’ can be found in various ways, such as by looking in the name listed
in a application like Font Book on Mac OS X. Alternatively, TEXLive contains the otfinfo
command line program, which can query this information; for example:

otfinfo -i `kpsewhich lmroman10-regular.otf`

results in a line that reads:

Preferred family: Latin Modern Roman

(The ‘preferred family’ name is usually better than the ‘family’ name.)

LuaTEX users only In order to load fonts by their name rather than by their filename
(e.g., ‘Latin Modern Roman’ instead of ‘ec-lmr10’), you may need to run the script
luaotfload-tool, which is distributed with the luaotfload package. Note that if you do
not execute this script beforehand, the first time you attempt to typeset the process will
pause for (up to) several minutes. (But only the first time.) Please see the luaotfload
documentation for more information.

10

2.2 By file name
XƎTEX and LuaTEX also allow fonts to be loaded by file name instead of font name. When
you have a very large collection of fonts, you will sometimes not wish to have them all
installed in your system’s font directories. In this case, it is more convenient to load
them from a different location on your disk. This technique is also necessary in XƎTEX
when loading OpenType fonts that are present within your TEX distribution, such as
/usr/local/texlive/2013/texmf-dist/fonts/opentype/public. Fonts in such loca-
tions are visible to XƎTEX but cannot be loaded by font name, only file name; LuaTEX
does not have this restriction. (If you for some reason want to restrict the fonts to the
ones provided by your TEX distribution even though you are using LuaTEX you can use
the KpseOnly option)KpseOnly

When selecting fonts by file name, any font that can be found in the default search
paths may be used directly (including in the current directory) without having to explic-
itly define the location of the font file on disk.

Fonts selected by filename must include bold and italic variants explicitly, unless
a .fontspec file is supplied for the font family (see Section 2.3). We’ll give some first
examples specifying everything explicitly:

\setmainfont{texgyrepagella-regular.otf}[
BoldFont = texgyrepagella-bold.otf ,
ItalicFont = texgyrepagella-italic.otf ,
BoldItalicFont = texgyrepagella-bolditalic.otf]

fontspec knows that the font is to be selected by file name by the presence of the ‘.otf’
extension. An alternative is to specify the extension separately, as shown following:

\setmainfont{texgyrepagella-regular}[
Extension = .otf ,
BoldFont = texgyrepagella-bold ,
...]

If desired, an abbreviation can be applied to the font names based on the mandatory
‘font name’ argument:

\setmainfont{texgyrepagella}[
Extension = .otf ,
UprightFont = *-regular ,
BoldFont = *-bold ,
...]

In this case ‘texgyrepagella’ is no longer the name of an actual font, but is used to con-
struct the font names for each shape; the * is replaced by ‘texgyrepagella’. Note in this
case that UprightFont is required for constructing the font name of the normal font to
use.

To load a font that is not in one of the default search paths, its location in the filesys-
tem must be specified with the Path feature:

\setmainfont{texgyrepagella}[
Path = /Users/will/Fonts/ ,
UprightFont = *-regular ,

11

BoldFont = *-bold ,
...]

Note that XƎTEX and LuaTEX are able to load the font without giving an extension, but
fontspec must know to search for the file; this can be indicated by using the Path feature
without an argument:

\setmainfont{texgyrepagella-regular}[
Path, BoldFont = texgyrepagella-bold,
...]

Mypreference is to always be explicit and include the extension; this also allows fontspec
to automatically identify that the font should be loaded by filename.

In previous versions of the package, the Path feature was also provided under the
alias ExternalLocation, but this latter name is now deprecated and should not be used
for new documents.

2.3 By custom file name using a .fontspec file
When fontspec is first asked to load a font, a font settings file is searched for with the
name ‘⟨fontname⟩.fontspec’.1 If you want to disable this feature on a per-font basis, use
the IgnoreFontspecFile font option.

The contents of this file can be used to specify font shapes and font features without
having to have this information present within each document. Therefore, it can be more
flexible than the alternatives listed above.

When searching for this .fontspec file, ⟨fontname⟩ is stripped of spaces and file
extensions are omitted. For example, given \setmainfont{TeX Gyre Adventor}, the
.fontspec file would be called TeXGyreAdventor.fontspec. If you wanted to transpar-
ently load options for \setmainfont{texgyreadventor-regular.otf}, the configura-
tion file would be texgyreadventor-regular.fontspec.

N.B. that while spaces are stripped, the lettercase of the names should match.
This mechanism can be used to define custom names or aliases for your font col-

lections. The syntax within this file follows from the \defaultfontfeatures, defined in
more detail later but mirroring the standard fontspec font loading syntax. As an exam-
ple, suppose we’re defining a font family to be loaded with \setmainfont{My Charis}.
The corresponding MyCharis.fontspec file would contain, say,

\defaultfontfeatures[My Charis]
{
Extension = .ttf ,
UprightFont = CharisSILR,
BoldFont = CharisSILB,
ItalicFont = CharisSILI,
BoldItalicFont = CharisSILBI,
% <any other desired options>

}
1Located in the current folder or within a standard texmf location.

12

The optional argument to \defaultfontfeaturesmust exactly match that requested by
the font loading command (\setmainfont, etc.) — in particular note that spaces are sig-
nificant here, so \setmainfont{MyCharis} will not ‘see’ the default font feature setting
within the .fontspec file.

Finally, note that options for individual font faces can also be defined in this way. To
continue the example above, here we colour the different faces:
\defaultfontfeatures[CharisSILR]{Color=blue}
\defaultfontfeatures[CharisSILB]{Color=red}

Such configuration lines could be stored either inline inside MyCharis.fontspec or
within their own .fontspec files; in this way, fontspec is designed to handle ‘nested’
configuration options.

Where \defaultfontfeatures is being used to specify font faces by a custom name,
the Font feature is used to set the filename of the font face. For example:
\defaultfontfeatures[charis]
{
UprightFont = charis-regular,
% <other desired options for all font faces in the family>

}

\defaultfontfeatures[charis-regular]
{
Font = CharisSILR
% <other desired options just for the `upright' font>

}

The fontspec interface here is designed to be flexible to accomodate a variety of use cases;
there is more than one way to achieve the same outcome when font faces are collected
together into a larger font family.

2.4 Querying whether a font ‘exists’

\IfFontExistsTF{⟨font name⟩}{⟨true branch⟩}{⟨false branch⟩}
The conditional \IfFontExistsTF is provided to testwhether the ⟨font name⟩ exists

or is loadable. If it is, the ⟨true branch⟩ code is executed; otherwise, the ⟨false branch⟩
code is.

This command can be slow since the enginemay resort to scanning the filesystem for
a missing font. Nonetheless, it has been a popular request for users who wish to define
‘fallback fonts’ for their documents for greater portability.

In this command, the syntax for the ⟨font name⟩ is a restricted/simplified version
of the font loading syntax used for \fontspec and so on. Fonts to be loaded by filename
are detected by the presence of an appropriate extension (.otf, etc.), and paths should
be included inline. E.g.:
\IfFontExistsTF{cmr10}{T}{F}
\IfFontExistsTF{Times New Roman}{T}{F}
\IfFontExistsTF{texgyrepagella-regular.otf}{T}{F}
\IfFontExistsTF{/Users/will/Library/Fonts/CODE2000.TTF}{T}{F}

13

The \IfFontExistsTF command is a synonym for the programming interface func-
tion \fontspec_font_if_exist:nTF (Section 5 on page 68).

3 Commands to select font families
For cases when a specific font with a specific feature set is going to be re-used many
times in a document, it is inefficient to keep calling \fontspec for every use. While the
\fontspec command does not define a new font instance after the first call, the feature
options must still be parsed and processed.

For this reason, new commands can be created for loading a particular font family
with the \newfontfamily command and variants, outlined in Section 1 on page 9 and
demonstrated in Example 2. This macro should be used to create commands that would
be used in the same way as \rmfamily, for example. If you would like to create a com-
mand that only changes the font inside its argument (i.e., the same behaviour as \emph)
define it using regular LATEX commands:

\newcommand\textnote[1]{{\notefont #1}}
\textnote{This is a note.}

Note that the double braces are intentional; the inner pair is used to delimit the scope of
the font change.

Comment for advanced users:The commandsdefinedby \newfontfamily (and \newfontface;
see next section) include their encoding information, so even if the document is set to
use a legacy TEX encoding, such commands will still work correctly. For example,

\documentclass{article}
\usepackage{fontspec}
\newfontfamily\unicodefont{Lucida Grande}
\usepackage{mathpazo}
\usepackage[T1]{fontenc}
\begin{document}
A legacy \TeX\ font. {\unicodefont A unicode font.}
\end{document}

4 Commands to select single font faces

\newfontface⟨cmd⟩{⟨font⟩}[⟨font features⟩]
\setfontface⟨cmd⟩{⟨font⟩}[⟨font features⟩]
\renewfontface⟨cmd⟩{⟨font⟩}[⟨font features⟩]
\providefontface⟨cmd⟩{⟨font⟩}[⟨font features⟩]

Example 2: Defining new font families.

This is a note.
\newfontfamily\notefont{Kurier}
\notefont This is a \emph{note}.

14

Sometimes only a specific font face is desired, without accompanying italic or bold
variants being automatically selected. This is common when selecting a font for a very
particular context within the document. For instance, say that a particular swash font is
desired that isn’t part of the document font setup. \newfontface could be used for this
purpose, shown in Example 3.

4.1 More control over font shape selection

BoldFont = ⟨font name⟩
ItalicFont = ⟨font name⟩
BoldItalicFont = ⟨font name⟩
SlantedFont = ⟨font name⟩
BoldSlantedFont = ⟨font name⟩
SwashFont = ⟨font name⟩
BoldSwashFont = ⟨font name⟩
SmallCapsFont = ⟨font name⟩
UprightFont = ⟨font name⟩

The automatic bold, italic, and bold italic font selections will not be adequate for the
needs of every font: while some fonts mayn’t even have bold or italic shapes, in which
case a skilled (or lucky) designer may be able to choose well-matching accompanying
shapes from a different font altogether, others can have a range of bold and italic fonts to
choose among. The BoldFont and ItalicFont features are provided for these situations.
If only one of these is used, the bold italic font is requested as the default from the new
font. See Example 4.

If a bold italic shape is not defined, or youwant to specify both custom bold and italic
shapes, the BoldItalicFont feature is provided.

4.1.1 Small caps shapes

For modern OpenType fonts, small caps glyphs are included within a fontface and
fontspec will automatically detect them for use with the \textsc and \scshape com-
mands. Pre-OpenType, it was common for font families to be distributed with small caps
glyphs in separate fonts, due to the limitations on the number of glyphs allowed in the
PostScript Type 1 format. Such fonts may be used by declaring the SmallCapsFont for
each font of the family you are specifying:

\setmainfont{ <upright> }[
UprightFeatures = { SmallCapsFont={ <sc> } } ,
BoldFeatures = { SmallCapsFont={ <bf sc> } } ,
ItalicFeatures = { SmallCapsFont={ <it sc> } } ,

Example 3: Defining a single font face.

QED

\newfontface\qedfont{EBGaramond-Regular.otf}[Style=Swash]
\qedfont QED
% \emph, \textbf, etc., all don't work

15

Example 4: Explicit selection of the bold font.

Hairline
Hairline Italic
Thin
Thin Italic

\setmainfont{Ysabeau-Hairline.otf}%
[BoldFont={Ysabeau-Thin.otf}]

Hairline \\
{\itshape Hairline Italic} \\
{\bfseries Thin } \\
{\bfseries\itshape Thin Italic} \\

BoldItalicFeatures = { SmallCapsFont={ <bf it sc> } } ,
]
Roman 123 \\ \textsc{Small caps 456}

For most modern fonts that have small caps as a font feature, this level of control isn’t
generally necessary.

All of the bold, italic, and small caps fonts can be loaded with different font features
from the main font. See Section 3 for details. When an OpenType font is selected for
SmallCapsFont, the small caps font feature is not automatically enabled. In this case,
users should write instead, if necessary,

\setmainfont{...}[
SmallCapsFont={...},
SmallCapsFeatures={Letters=SmallCaps},

]

4.1.2 Slanted font shapes

When a font family has both slanted and italic shapes, these may be specified separately
using the analogous features SlantedFont and BoldSlantedFont. Without these, how-
ever, the LATEX font switches for slanted (\textsl, \slshape) will default to the italic
shape.

4.1.3 Swash font shapes

Swash font shapes in a family is supported by LATEX’s commands \textsw and \swshape.
These commands assume that swash shapes are in a sense ‘parallel’ to italic shapes
— for instance, writing both \swshape and \itshape would not result in an italic
swash shape (you would get whichever was declared last). The fontspec package
adopts this approach, while recognising that OpenType fonts in theory could have
any crazy combination of shapes such as ‘italic swash small caps’. Attempting to sup-
port arbitrarily complex situations makes setup (and the code) more difficult with let’s
say infrequent benefit — fontspec’s alternate feature selection mechanisms (such as
\addfontfeature{Style=Swash}) can be used in such situations.

Therefore, setup is quite simple:

\setmainfont{...}[
SwashFont = {...} ,

BoldSwashFont = {...} ,
]

16

No assumptions are made about the +swsh OpenType feature availability, and if desired
the ‘Swash’ feature needs to be explicitly requested as in:

\setmainfont{...}[
SwashFont = {...} ,
SwashFeatures = {Style=Swash} ,
...

]

This may become more automatic in the future.

4.2 Specifically choosing the NFSS family
In LATEX’s NFSS, font families are definedwith names such as ‘ppl’ (Palatino), ‘lmr’ (Latin
Modern Roman), and so on, which are selected with the \fontfamily command:

\fontfamily{ppl}\selectfont

In fontspec, the family names are auto-generated based on the fontname of the font; for
example, writing \fontspec{Times New Roman} for the first time would generate an in-
ternal font family name of ‘TimesNewRoman(1)’. Please note that you should not rely on
the name that is generated.

In certain cases it is desirable to be able to choose this internal font family name so
it can be re-used elsewhere for interacting with other packages that use the LATEX’s font
selection interface; an example might be

\usepackage{fancyvrb}
\fvset{fontfamily=myverbatimfont}

To select a font for use in this way in fontspec use the NFSSFamily feature:2

\newfontfamily\verbatimfont{Inconsolata}[NFSSFamily=myverbatimfont]

It is then possible to write commands such as:

\fontfamily{myverbatimfont}\selectfont

which is essentially the same as writing \verbatimfont, or to go back to the orginal
example:

\fvset{fontfamily=myverbatimfont}

Only use this feature when necessary; the in-built font switching commands that
fontspec generates (such as \verbatimfont in the example above) are recommended
in all other cases.

If you don’t wish to explicitly set the NFSS family but you would like to knowwhat it
is, an alternativemechanism for packagewriters is introduced as part of the fontspec pro-
gramming interface; see the function \fontspec_set_family:Nnn for details (Section 5
on page 68).

2Thanks to Luca Fascione for the example and motivation for finally implementing this feature.

17

4.3 Choosing additional NFSS font faces
LATEX’s font selection scheme (NFSS) is more flexible than the fontspec interface discussed
up until this point. It assigns to each font face a family (discussed above), a series such
as bold or light or condensed, and a shape such as italic or slanted or small caps. The
fontspec features such as BoldFont and so on all assign faces for the default series and
shapes of the NFSS, but it’s not uncommon to have font families that havemultipleweights
and shapes and so on.

If you set up a regular font family with the ‘standard four’ (upright, bold, italic, and
bold italic) shapes and then want to use, say, a light font for a certain document element,
many users will be perfectly happy to use \newfontface\⟨switch⟩ and use the resulting
font \⟨switch⟩. In other cases, however, it is more convenient or even necessary to load
additional fonts using additional NFSS specifiers.
FontFace = {⟨series⟩}{⟨shape⟩} { Font = ⟨font name⟩ , ⟨features⟩ }
FontFace = {⟨series⟩}{⟨shape⟩}{⟨font name⟩}

The font thus specified will inherit the font features of the main font, with optional
additional ⟨features⟩ as requested. (Note that the optional {⟨features⟩} argument is still
surrounded with curly braces.) Multiple FontFace commands may be used in a single
declaration to specify multiple fonts. As an example:

\setmainfont{font1.otf}[
FontFace = {c}{\shapedefault}{ font2.otf } ,
FontFace = {c}{m}{ Font = font3.otf , Color = red }
]

Writing \fontseries{c}\selectfontwill result in font2 being selected, which then fol-
lowed by \fontshape{m}\selectfontwill result in font3 being selected (in red). A font
face that is defined in terms of a different series but an upright shape (\shapedefault,
as shown above) will attempt to find a matching small caps feature and define that face
as well. Conversely, a font face defined in terms of a non-standard font shape will not.

There are some standards for choosing shape and series codes; the LATEX2ε font se-
lection guide3 has a comprehensive listing.

The FontFace command also interacts properly with the SizeFeatures command
as follows:

FontFace = {c}{n}{
Font = lmsans10-oblique.otf ,
SizeFeatures = {
{ Size = -10 , Font = lmsans8-oblique.otf } ,
{ Size = 10-15 } ,
{ Size = 15- , Font = lmsans17-oblique.otf } ,

},
},

Note that if the first Font feature is omitted then each size needs its own inner Font
declaration.

3texdoc fntguide

18

4.3.1 An example for \strong

If you wanted to set up a font family to allow nesting of the \strong to easily access
increasing font weights, you might use a declaration along the following lines:

\setmonofont{SourceCodePro}[
Extension = .otf ,
UprightFont = *-Light ,
BoldFont = *-Regular ,
FontFace = {k}{n}{*-Black} ,

]
\strongfontdeclare{\bfseries,\fontseries{k}\selectfont}

Further ‘syntactic sugar’ is planned to make this process somewhat easier.

4.4 Math(s) fonts
When \setmainfont, \setsansfont and \setmonofont are used in the preamble, they
also define the fonts to be used in maths mode inside the \mathrm-type commands. This
only occurs in the preamble because LATEX freezes the maths fonts after this stage of the
processing. The fontspec package must also be loaded after any maths font packages
(e.g., euler) to be successful. (Actually, it is only euler that is the problem.4)

Note that fontspecwill not change the font for generalmathematics; only the upright
and bold shapes will be affected. To change the font used for the mathematical symbols,
see either the mathspec package or the unicode-math package.

Note that you may find that loading some maths packages won’t be as smooth as
you expect since fontspec (and XƎTEX in general) breaks many of the assumptions of TEX
as to where maths characters and accents can be found. Contact me if you have troubles,
but I can’t guarantee to be able to fix any incompatibilities. The Lucida and Euler maths
fonts should be fine; for all others keep an eye out for problems.
\setmathrm{⟨font name⟩}[⟨font features⟩]
\setmathsf{⟨font name⟩}[⟨font features⟩]
\setmathtt{⟨font name⟩}[⟨font features⟩]
\setboldmathrm{⟨font name⟩}[⟨font features⟩]

However, the default text fontsmay not necessarily be the ones youwish to usewhen
typesetting maths (especially with the use of fancy ligatures and so on). For this reason,
you may optionally use the commands above (in the same way as our other \fontspec-
like commands) to explicitly state which fonts to use inside such commands as \mathrm.
Additionally, the \setboldmathrm command allows you define the font used for \mathrm
when in bold maths mode (which is activated with, among others, \boldmath).

For example, if you were using Optima with the Euler maths font, you might have
this in your preamble:

\usepackage{mathpazo}
\usepackage{fontspec}
\setmainfont{Optima}
4Speaking of euler, if you want to use its [mathbf] option, it won’t work, and you’ll need to put this after

fontspec is loaded instead: \AtBeginDocument{\DeclareMathAlphabet\mathbf{U}{eur}{b}{n}}

19

\setmathrm{Optima}
\setboldmathrm[BoldFont={Optima ExtraBlack}]{Optima Bold}

These commands are compatible with the unicode-math package. Having said that,
unicode-math also defines a more general way of defining fonts to use in maths mode,
so you can ignore this subsection if you’re already using that package.

5 Miscellaneous font selecting details
The optional argument — from v2.4 For the first decade of fontspec’s life, optional
font features were selected with a bracketed argument before the font name, as in:

\setmainfont[
lots and lots ,
and more and more ,
an excessive number really ,
of font features could go here

]{myfont.otf}

This always looked like ugly syntax tome, because themost important detail— the name
of the font — was tucked away at the end. The order of these arguments has now been
reversed:

\setmainfont{myfont.otf}[
lots and lots ,
and more and more ,
an excessive number really ,
of font features could go here

]

I hope this doesn’t cause any problems.

1. Backwards compatibility has been preserved, so either input method works.

2. In fact, you can write

\fontspec[Ligatures=Rare]{myfont.otf}[Color=red]

if you really felt like it and both sets of features would be applied.

Spaces \fontspec and \addfontfeatures ignore trailing spaces as if it were a ‘naked’
control sequence; e.g., ‘M. \fontspec{...} N’ and ‘M. \fontspec{...}N’ are the same.

20

Part III

Selecting font features
The commands discussed so far such as \fontspec each take an optional argument for
accessing the font features of the requested font. Commands are provided to set default
features to be applied for all fonts, and even to change the features that a font is presently
loadedwith. Different font shapes can be loadedwith separate features, and different fea-
tures can even be selected for different sizes that the font appears in. This part discusses
these options.

1 Default settings

\defaultfontfeatures{⟨font features⟩}
It is sometimes useful to define font features that are applied to every subsequent

font selection command. This may be defined with the \defaultfontfeatures com-
mand, shown in Example 5. New calls of \defaultfontfeatures overwrite previous
ones, and defaults can be reset by calling the command with an empty argument.
\defaultfontfeatures[⟨font name⟩]{⟨font features⟩}

Default font features can be specified on a per-font and per-face basis by using the
optional argument to \defaultfontfeatures as shown.

\defaultfontfeatures[texgyreadventor-regular.otf]{Color=blue}
\setmainfont{texgyreadventor-regular.otf}% will be blue

Multiple fonts may be affected by using a comma separated list of font names.
\defaultfontfeatures[⟨\font-switch⟩]{⟨font features⟩}

New in v2.4. Defaults can also be applied to symbolic families such as those created
with the \newfontfamily command and for \rmfamily, \sffamily, and \ttfamily:

\defaultfontfeatures[\rmfamily,\sffamily]{Ligatures=TeX}
\setmainfont{texgyreadventor-regular.otf}% will use standard TeX ligatures

Example 5: A demonstration of the \defaultfontfeatures command.

Some default text 0123456789
Now grey, with old-style figures: 0123456789

\fontspec{texgyreadventor-regular.otf}
Some default text 0123456789 \\
\defaultfontfeatures{

Numbers=OldStyle, Color=888888
}
\fontspec{texgyreadventor-regular.otf}
Now grey, with old-style figures:
0123456789

21

The line above to set TEX-like ligatures is now activated by default in fontspec.cfg. To
reset default font features, simply call the command with an empty argument:

\defaultfontfeatures[\rmfamily,\sffamily]{}
\setmainfont{texgyreadventor-regular.otf}% will no longer use standard TeX ligatures

\defaultfontfeatures+{⟨font features⟩}
\defaultfontfeatures+[⟨font name⟩]{⟨font features⟩}

New in v2.4. Using the + form of the command appends the ⟨font features⟩ to
any already-selected defaults.

2 Working with the currently selected features

\IfFontFeatureActiveTF{⟨font feature⟩}{⟨true code⟩}{⟨false code⟩}
This command queries the currently selected font face and executes the appropriate

branch based onwhether the ⟨font feature⟩ as specified by fontspec is currently active.
For example, the following will print ‘True’:

\setmainfont{texgyrepagella-regular.otf}[Numbers=OldStyle]
\IfFontFeatureActiveTF{Numbers=OldStyle}{True}{False}

Note that there is no way for fontspec to know what the default features of a font
will be. For example, by default the texgyrepagella fonts use lining numbers. But in the
following example, querying for lining numbers returns false since they have not been
explicitly requested:

\setmainfont{texgyrepagella-regular.otf}
\IfFontFeatureActiveTF{Numbers=Lining}{True}{False}

Please note:At time ofwriting this function only supportsOpenType fonts;AAT/Graphite
fonts under the XƎTEX engine are not supported.
\addfontfeatures{⟨font features⟩}

This command allows font features in an entire font family to be changed without
knowing what features are currently selected or even what font family is being used. A
good example of this could be to add a hook to all tabular material to use monospaced
numbers, as shown in Example 6. If you attempt to change an already-selected feature,
fontspec will try to de-activate any features that clash with the new ones. E.g., the fol-
lowing two invocations are mutually exclusive:

\addfontfeatures{Numbers=OldStyle}...
\addfontfeatures{Numbers=Lining}...
123

Since Numbers=Lining comes last, it takes precedence anddeactivates the call Numbers=OldStyle.
If you wish to apply the change to only one of the fonts of a family (say, italics only)

you can write

\addfontfeatures{ItalicFeatures={Numbers=Lowercase}}

This command may also be executed under the alias \addfontfeature.\addfontfeature

22

Example 6: A demonstration of the \addfontfeatures command.

‘In 1842, 999 people sailed 97 miles in 13 boats. In
1923, 111 people sailed 54 miles in 56 boats.’

Year People Miles Boats
1842 999 75 13
1923 111 54 56

\fontspec{texgyreadventor-regular.otf}%
[Numbers={Proportional,OldStyle}]

`In 1842, 999 people sailed 97 miles in
13 boats. In 1923, 111 people sailed 54
miles in 56 boats.' \bigskip

{\addfontfeatures{Numbers={Monospaced,Lining}}
\begin{tabular}{@{} cccc @{}}

Year & People & Miles & Boats \\
\hline 1842 & 999 & 75 & 13 \\

1923 & 111 & 54 & 56
\end{tabular}}

2.1 Priority of feature selection
Features defined with \addfontfeatures override features specified by \fontspec,
which in turn override features specified by \defaultfontfeatures. If in doubt, when-
ever a new font is chosen for the first time, an entry is made in the transcript (.log) file
displaying the font name and the features requested.

3 Different features for different font shapes

BoldFeatures={⟨features⟩}
ItalicFeatures={⟨features⟩}
BoldItalicFeatures={⟨features⟩}
SlantedFeatures={⟨features⟩}
BoldSlantedFeatures={⟨features⟩}
SwashFeatures={⟨features⟩}
BoldSwashFeatures={⟨features⟩}
SmallCapsFeatures={⟨features⟩}
UprightFeatures={⟨features⟩}

It is entirely possible that separate fonts in a familywill require separate options; e.g.,
certain italic fonts contains various swash feature options that are usually unavailable in
the upright (‘roman’) shapes.

The font features defined at the top level of the optional \fontspec argument are
applied to all shapes of the family. Using the xxFeatures options shown above, separate
font featuresmay be defined to their respective shapes in addition to, andwith precedence
over, the ‘global’ font features. See Example 7.

Note that because most fonts include their small caps glyphs within the main font,
features specified with SmallCapsFeatures are applied in addition to any other shape-
specific features as defined above, and hence SmallCapsFeatures can be nested within
ItalicFeatures and friends. Every combination of upright, italic, bold, (etc.), and small

23

Example 7: Features for, say, just italics.

Don’t Ask Victoria!
Don’t Ask Victoria!

\fontspec{EBGaramond-Regular.otf}%
[ItalicFont=EBGaramond-Italic.otf]

\itshape Don’t Ask Victoria! \\
\addfontfeature{ItalicFeatures={Style=Swash}}
Don’t Ask Victoria! \\

caps can thus be assigned individual features, as shown in the somewhat ludicrous Ex-
ample 8.

4 Selecting fonts from TrueType Collections (TTC files)
TrueType Collections are multiple fonts contained within a single file. Each font within
a collection must be explicitly chosen using the FontIndex command. Since TrueType
Collections are often used to contain the italic/bold shapes in a family, fontspec auto-
matically selects the italic, bold, and bold italic fontfaces from the same file. For example,
to load the macOS system font Optima:

\setmainfont{Optima.ttc}[
Path = /System/Library/Fonts/ ,
UprightFeatures = {FontIndex=0} ,
BoldFeatures = {FontIndex=1} ,
ItalicFeatures = {FontIndex=2} ,
BoldItalicFeatures = {FontIndex=3} ,

]

Support for TrueType Collections has only been tested in XƎTEX, but should also work
with an up-to-date version of LuaTEX and the luaotfload package.

5 Different features for different font sizes

SizeFeatures = {
...
{ Size = ⟨size range⟩, ⟨font features⟩ },
{ Size = ⟨size range⟩, Font = ⟨font name⟩, ⟨font features⟩ },
...

}
The SizeFeatures feature is a little more complicated than the previous features

discussed. It allows different fonts and different font features to be selected for a given
font family as the point size varies.

It takes a comma separated list of braced, comma separated lists of features for each
size range. Each sub-list must contain the Size option to declare the size range, and op-
tionally Font to change the font based on size. Other (regular) fontspec features that are

24

Example 8: An example of setting the SmallCapsFeatures separately for each font shape.

Upright SMALL CAPS
Italic ITALIC SMALL CAPS
Bold BOLD SMALL CAPS
Bold Italic BOLD ITALIC SMALL CAPS

\fontspec{texgyretermes}[
Extension = {.otf},
UprightFont = {*-regular}, ItalicFont = {*-italic},
BoldFont = {*-bold}, BoldItalicFont = {*-bolditalic},
UprightFeatures={Color = 220022,

SmallCapsFeatures = {Color=115511}},
ItalicFeatures={Color = 2244FF,

SmallCapsFeatures = {Color=112299}},
BoldFeatures={Color = FF4422,
SmallCapsFeatures = {Color=992211}},

BoldItalicFeatures={Color = 888844,
SmallCapsFeatures = {Color=444422}},
]

Upright {\scshape Small Caps}\\
\itshape Italic {\scshape Italic Small Caps}\\
\upshape\bfseries Bold {\scshape Bold Small Caps}\\
\itshape Bold Italic {\scshape Bold Italic Small Caps}

added are used on top of the font features that would be used anyway. A demonstra-
tion to clarify these details is shown in Example 9. A less trivial example is shown in the
context of optical font sizes in Section 6.6 on page 31.

To be precise, the Size sub-feature accepts arguments in the form shown in Table 1
on the following page. Braces around the size range are optional. For an exact font size
(Size=X) font sizes chosen near that size will ‘snap’. For example, for size definitions at
exactly 11pt and 14pt, if a 12pt font is requested actually the 11pt font will be selected. This
is a remnant of the past when fonts were designed inmetal (at obviously rigid sizes) and
later when bitmap fonts were similarly designed for fixed sizes.

If additional features are only required for a single size, the other sizes must still be
specified. As in:

SizeFeatures={
{Size=-10,Numbers=Uppercase},
{Size=10-}}

Example 9: An example of specifying different font features for different sizes of font with
SizeFeatures.

Small

Normal size

Large

\fontspec{texgyrechorus-mediumitalic.otf}[
SizeFeatures={
{Size={-8}, Font=texgyrebonum-italic.otf, Color=AA0000},
{Size={8-14}, Color=00AA00},
{Size={14-}, Color=0000AA}}]

{\scriptsize Small\par} Normal size\par {\Large Large\par}

25

Otherwise, the font sizes greater than 10 won’t be defined at all!

Interaction with other features For SizeFeatures to work with ItalicFeatures,
BoldFeatures, etc., and SmallCapsFeatures, a strict heirarchy is required:

UprightFeatures =
{
SizeFeatures =
{
{
Size = -10,
Font = ..., % if necessary
SmallCapsFeatures = {...},
... % other features for this size range

},
... % other size ranges
}

}

Suggestions on simplifying this interface welcome.

6 Font independent options
Features introduced in this section may be used with any font.

6.1 Colour
Color (or Colour) uses font specifications to set the colour of the text. You should think
of this as the literal glyphs of the font being coloured in a certain way. Notably, this
mechanism is different to that of the color/xcolor/hyperref/etc. packages, and in fact us-
ing fontspec commands to set colour will prevent your text from changing colour using
those packages at all! (For example, if you set the colour in a \setmainfont command,
\color{...} and related commands, including hyperlink colouring, will no longer have
any effect on text in this font.) Therefore, fontspec’s colour commands are best used to set
explicit colours in specific situations, and the xcolor package is recommended for more
general colour functionality.

Table 1: Syntax for specifying the size to apply custom font features.

Input Font size, s

Size = X- s ≥ X
Size = -Y s < Y
Size = X-Y X ≤ s < Y
Size = X s = X

26

The colour can be defined as a triplet of two-digit Hex RGB values, with option-
ally another value for the transparency (where 00 is completely transparent and FF is
opaque.)

If you load the xcolor package, you may use any named colour instead of writing
the colours in hexadecimal.

\usepackage{xcolor}
...
\fontspec[Color=red]{Montserrat-Medium.otf} ...
\definecolor{Foo}{rgb}{0.3,0.4,0.5}
\fontspec[Color=Foo]{Montserrat-Medium.otf} ...

You may also use named colours defined with the color commands of the L3 pro-
gramming layer:

\ExplSyntaxOn
\color_set:nnn{Foo}{rgb}{0.3,0.4,0.5}

\ExplSyntaxOff
...
\fontspec[Color=Foo]{Montserrat-Medium.otf} ...

Color expressions (like red!50!blue) are not supported. The color package is not
supported neither.

The code will at first test for color names of the L3 layer, then for xcolor names, and
at last try to use the argument as a hexadecimal value.

You may specify the transparency with a named colour using the Opacity feature,
which takes an decimal from zero to one corresponding to transparent to opaque respec-
tively:

\fontspec[Color=red,Opacity=0.7]{Montserrat-Medium.otf} ...

It is still possible to specify a colour in six-char hexadecimal form while defining opacity
in this way, if you like.

6.1.1 Color models

With XƎTEX color are always written in the rgb color model into the PDF. When
using LuaTEX, colors with the commands of the L3 layer can be written as rgb or
cmyk or as spot color depending on their definition and of the value of the variable
\l_color_fixed_model_tl.

Example 10: Selecting colour with transparency.

WSPR
\fontsize{48}{48}
\fontspec{texgyrebonum-bold.otf}
{\addfontfeature{Color=FF000099}W}\kern-0.4ex
{\addfontfeature{Color=0000FF99}S}\kern-0.4ex
{\addfontfeature{Color=DDBB2299}P}\kern-0.5ex
{\addfontfeature{Color=00BB3399}R}

27

6.1.2 Spot colors

With LuaTEX it is possible to use spot colors. This requires the use of the PDF manage-
ment:

\DocumentMetadata{}
\documentclass{article}
\usepackage{fontspec}
\ExplSyntaxOn
\color_model_new:nnn { sepblue } { Separation }

{
name = PANTONE~3005~U ,
alternative-model = cmyk ,
alternative-values = {1, 0.56, 0,0},

}
\color_set:nnn{spotblue}{sepblue}{1}

\ExplSyntaxOff
...
\fontspec[Color=spotblue]{texgyreheros}

6.2 Scale

Scale = ⟨number⟩
Scale = MatchLowercase
Scale = MatchUppercase
Scale = MatchAveragecase

In its explicit form, Scale takes a single numeric argument for linearly scaling the
font, as demonstrated in Example 1.

Aswell as a numerical argument, the Scale feature also accepts options MatchLowercase,
MatchUppercase, and MatchAveragecase, which will scale the font being selected to
match the current default roman font to either the height of the lowercase, the height
of the uppercase letters, or the average of the two, respectively; these features are shown
in Example 11. The amount of scaling used in each instance is reported in the .log file.

Additional calls to the Scale feature overwrite the settings of the former. If youwant
to accumulate scale factors (useful perhaps to fine-tune the settings of MatchLowercase),
the ScaleAgain feature can be used as many times as necessary. For example:

Example 11: Automatically calculated scale values.

The perfect match is hard to find.
L O G O F O N T
Lower and UPPER CASE

\setmainfont{texgyrepagella-regular.otf}
\newfontfamily\lc[Scale=MatchLowercase]{texgyreadventor-regular.otf}
The perfect match {\lc is hard to find.}\\

\newfontfamily\uc[Scale=MatchUppercase]{texgyreheros-regular.otf}
L O G O {\uc F O N T}\\

\newfontfamily\ac[Scale=MatchAveragecase]{FiraMath-Regular.otf}
Lower {\ac and UPPER} CASE

28

[Scale = 1.1 , Scale = 1.2] % -> scale of 1.2
[Scale = 1.1 , ScaleAgain = 1.2] % -> scale of 1.32

Note thatwhen Scale=MatchLowercase, Scale=MatchUppercase, or Scale=MatchAverageCase
is used with \setmainfont, the new ‘main’ font of the document will be scaled to match
the old default. If you wish to automatically scale all fonts except have the main font use
‘natural’ scaling, you may write

\defaultfontfeatures{ Scale = MatchLowercase }
\defaultfontfeatures[\rmfamily]{ Scale = 1}

One or both of these lines may be placed into a local fontspec.cfg file (see Section 3.3
on page 6) for this behaviour to be effected in your own documents automatically. (Also
see Section 1 on page 21 for more information on setting font defaults.)

6.3 Interword space
While the space between words can be varied with the TEX primitive \spaceskip com-
mand, fontspec also supports changing the interword spacing when a given font is
loaded.

The space in between words in a paragraph will be chosen automatically, and gener-
ally will not need to be adjusted. For those times when the precise details are important,
the WordSpace feature is provided, which takes either a single scaling factor to scale the
default value, or a triplet of comma-separated values to scale the nominal value, the
stretch, and the shrink of the interword space by, respectively. (WordSpace={x} is the
same as WordSpace={x,x,x}.)

Note that TEX’s optimisations in how it loads fonts means that you cannot use this
feature in \addfontfeatures.

6.4 Post-punctuation space
If \frenchspacing is not in effect (which is the default), TEX will allow extra space after
some punctuation in its goal of justifying the lines of text.

The PunctuationSpace feature takes a scaling factor by which to adjust the nominal
value chosen for the font; this is demonstrated in Example 13.Note that PunctuationSpace=0
is not equivalent to \frenchspacing, although the difference will only be apparent when
a line of text is under-full.

Note that TEX’s optimisations in how it loads fonts means that you cannot use this
feature in \addfontfeatures.

6.5 The hyphenation character
The letter used for hyphenation may be chosen with the HyphenChar feature. With one
exception (HyphenChar = None), this is a XƎTEX-only feature since LuaTEX cannot set the
hyphenation character on a per-font basis; see its \prehyphenchar primitive for further
details.

HyphenChar takes three types of input, which are chosen according to some simple
rules. If the input is the string None, then hyphenation is suppressed for this font.

29

Example 12: Scaling the default interword space. An exaggerated value has been chosen to empha-
sise the effects here.

Some text for our example to take up some space, and to
demonstrate the default interword space.

Sometextforourexampletotakeupsomespace,andtodemon-
stratethedefaultinterwordspace.

\fontspec{texgyretermes-regular.otf}
Some text for our example to take
up some space, and to demonstrate
the default interword space.
\bigskip

\fontspec{texgyretermes-regular.otf}%
[WordSpace = 0.3]

Some text for our example to take
up some space, and to demonstrate
the default interword space.

Example 13: Scaling the default post-punctuation space.

Letters, Words. Sentences.
Letters, Words. Sentences.
Letters, Words. Sentences.

\nonfrenchspacing
\fontspec{texgyreschola-regular.otf}
Letters, Words. Sentences. \par

\fontspec{texgyreschola-regular.otf}[PunctuationSpace=2]
Letters, Words. Sentences. \par

\fontspec{texgyreschola-regular.otf}[PunctuationSpace=0]
Letters, Words. Sentences.

30

As part of fontspec.cfg, the default monospaced family (e.g., \ttfamily) is set up
to automatically set HyphenChar = None.

If the input is a single character, then this character is used. Finally, if the input is
longer than a single character it must be the UTF-8 slot number of the hyphen character
you desire.

Note that TEX’s optimisations in how it loads fonts means that you cannot use this
feature in \addfontfeatures.

6.6 Optical font sizes
Optically scaled fonts thicken out as the font size decreases in order to make the glyph
shapes more robust (less prone to losing detail), which improves legibility. Conversely,
at large optical sizes the serifs and other small details may be more delicately rendered.

OpenType fonts with optical scaling can exist in several discrete sizes (in separate
font files). When loading fonts by name, XƎTEX and LuaTEX engines will attempt to auto-
matically load the appropriate font as determined by the current font size. An example of
this behaviour is shown in Example 15, in which some larger text is mechanically scaled
down to compare the difference for equivalent font sizes.

The OpticalSize feature may be used to specify a different optical size. With
OpticalSize set (Example 16) to zero, no optical size font substitution is performed.

The SizeFeatures feature (Section 5 on page 24) can be used to specify exactly
which optical sizes will be used for ranges of font size. For example, something like:

\fontspec{Latin Modern Roman}[
UprightFeatures = { SizeFeatures = {
{Size=-10, OpticalSize=8 },
{Size= 10-14, OpticalSize=10},
{Size= 14-18, OpticalSize=14},
{Size= 18-, OpticalSize=18}}}

]

6.7 Font transformations
In rare situations users may want to mechanically distort the shapes of the glyphs in the
current font such as shown in Example 17. Please don’t overuse these features; they are
not a good alternative to having the real shapes.

Example 14: Explicitly choosing the hyphenation character.

EXAMPLE
HYPHENATION

EXAMPLE
HYPHEN+
ATION

\def\text{\fbox{\parbox{1.55cm}{%
EXAMPLE HYPHENATION%

}}\qquad\qquad\null\par\bigskip}

\fontspec{LinLibertine_R.otf}[HyphenChar=None]
\text
\fontspec{LinLibertine_R.otf}[HyphenChar={+}]
\text

31

Example 15: A demonstration of automatic optical size selection.

Automatic optical size
Automatic optical size

\fontspec{Latin Modern Roman}
Automatic optical size \\
\scalebox{0.4}{\Huge
Automatic optical size}

Example 16: Explicit optical size substitution for the Latin Modern Roman family.

Latin Modern optical sizes
Latin Modern optical sizes
Latin Modern optical sizes
Latin Modern optical sizes

\fontspec{Latin Modern Roman}[OpticalSize=5]
Latin Modern optical sizes \\

\fontspec{Latin Modern Roman}[OpticalSize=8]
Latin Modern optical sizes \\

\fontspec{Latin Modern Roman}[OpticalSize=12]
Latin Modern optical sizes \\

\fontspec{Latin Modern Roman}[OpticalSize=17]
Latin Modern optical sizes

Example 17: Articifial font transformations.

ABCxyz ABCxyz
ABCxyz ABCxyz
ABCxyz ABCxyz

\fontspec{Quattrocento-Regular.ttf} \emph{ABCxyz} \quad
\fontspec{Quattrocento-Regular.ttf}[FakeSlant=0.2] ABCxyz

\fontspec{Quattrocento-Regular.ttf} ABCxyz \quad
\fontspec{Quattrocento-Regular.ttf}[FakeStretch=1.2] ABCxyz

\fontspec{Quattrocento-Regular.ttf} \textbf{ABCxyz} \quad
\fontspec{Quattrocento-Regular.ttf}[FakeBold=1.5] ABCxyz

32

If values are omitted, their defaults are as shown above.
If youwant the bold shape to be faked automatically, or the italic shape to be slanted

automatically, use the AutoFakeBold and AutoFakeSlant features. For example, the fol-
lowing two invocations are equivalent:

\fontspec[AutoFakeBold=1.5]{Charis SIL}
\fontspec[BoldFeatures={FakeBold=1.5}]{Charis SIL}

If both of the AutoFake... features are used, then the bold italic font will also be faked.

6.8 Letter spacing
Letter spacing, or tracking, is the term given to adding (or subtracting) a small amount
of horizontal space in between adjacent characters. It is specified with the LetterSpace,
which takes a numeric argument, shown in Example 18.

The letter spacing parameter is a normalised additive factor (not a scaling factor);
it is defined as a percentage of the font size. That is, for a 10 pt font, a letter spacing
parameter of ‘1.0’ will add 0.1 pt between each letter.

This functionality is not generally used for lowercase text in modern typesetting but
does have historic precedent in a variety of situations. In particular, small amounts of
letter spacing can be very useful, when setting small caps or all caps titles. Also see the
OpenType Uppercase option of the Letters feature (3.1.7 on page 45).

7 Variable fonts
OpenType variable fonts and Multiple Master fonts are parameterised over orthogonal
font axes, allowing continuous selection along such features asweight,width, and optical
size.

Currently OpenType variable fonts are only supported in LuaTEX, while Multiple
Master fonts only work with XƎTEX.

7.1 Optical font sizes
Whereas traditional OpenType fontswill have only a few separate optical sizes, a Variable
or Multiple Master font’s optical size can be specified over a continuous range. Unfortu-
nately, this flexibility makes it harder to create an automatic interface through LATEX, and
the optical size for a Variable or Multiple Master font must always be specified explicitly.

Example 18: The LetterSpace feature.

USE TRACKING FOR DISPLAY CAPS TEXT
USE TRACKING FOR DISPLAY CAPS TEXT

\setmainfont{Ysabeau-Light.otf}
\addfontfeature{LetterSpace=0.0}
USE TRACKING FOR DISPLAY CAPS TEXT \\
\addfontfeature{LetterSpace=3.0}
USE TRACKING FOR DISPLAY CAPS TEXT

33

\fontspec{Minion MM Roman}[OpticalSize=11]
MM optical size test \\
\fontspec{Minion MM Roman}[OpticalSize=47]
MM optical size test \\
\fontspec{Minion MM Roman}[OpticalSize=71]
MM optical size test \\

7.2 Weight
For fonts with a variable weight axis, the weight can be specified through the Weight
feature. The value should be between 0 and 1000, where typically 400 corresponds to
regular wight and 700 is a bold font.

\fontspec{Source Serif Variable}[Weight=700]
Bold \\
\fontspec{Source Serif Variable}[Weight=200]
Extra Light \\

7.3 Width
Similarly, the Width feature allows specifying the value of thewidth axis, where the value
is a percentage of normal width.

\fontspec{Noto Serif}[Width=100]
Normal Width \\
\fontspec{Noto Serif}[Width=75]
Condensed \\

7.4 Slant
Also fonts with a slant axis can be controlled with the Slant feature. In a standard com-
pliant font the value should specify the clockwise angle in degree the glyphs are slanted.
Therefore for a typical forward leaning slanted font, a negative value should be passed.

Many fonts use this feature in non-standard ways, so you might have to experiment
a bit with the value.

\fontspec{Roboto Flex}[Slant=0]
Upright \\
\fontspec{Roboto Flex}[Slant=-5]
Slanted \\

7.5 Other axes
For OpenType variable fonts, additional axis values can be specified if the four letter tag
of these axes is known. Than their value can be set with the RawAxis feature:

\fontspec{Noto Serif}[RawAxis={CTGR=100}]
Maximal contrast \\
\fontspec{Noto Serif}[RawAxis={CTGR=0}]
Regular contrast \\

34

7.6 Instances
Instead of manually setting axis values, many fonts contain named instances which are
predefined settings of all axes.

To select such an instance, the Instance feature can be used:

\fontspec{Noto Serif}[Instance=ExtraCondensed Bold]
This is in extra condensed bold.

35

Part IV

OpenType
1 Introduction
OpenType fonts (and other ‘smart’ font technologies such as AAT and Graphite) can
change the appearance of text in many different ways. These changes are referred to
as font features. When the user applies a feature — for example, small capitals — to a
run of text, the code inside the font makes appropriate substitutions and small capitals
appear in place of lowercase letters. However, the use of such features does not affect the
underlying text. In our small caps example, the lowercase letters are still stored in the
document; only the appearance has been changed by the OpenType feature. This makes
it possible to search and copy text without difficulty. If the user selected a different font
that does not support small caps, the ‘plain’ lowercase letters would appear instead.

Some OpenType features are required to support particular scripts, and these fea-
tures are often applied automatically. The Indic scripts, for example, often require that
characters be reshaped and reordered after they are typed by the user, in order to dis-
play them in the traditional ways that readers expect. Other features can be applied to
support a particular language. The Junicode font formedievalists uses by default the Old
English shape of the letter thorn, while in modern Icelandic thorn has a more rounded
shape. If a user tags some text as being in Icelandic, Junicode will automatically change
to the Icelandic shape through an OpenType feature that localises the shapes of letters.

There are a large group of OpenType features, designed to support high quality
typography amultitude of languages andwriting scripts. Examples of some font features
have already been shown in previous sections; the complete set ofOpenType font features
supported by fontspec is described below in Section 3.

The OpenType specification provides four-letter codes (e.g., smcp for small capitals)
for each feature. The four-letter codes are given below along with the fontspec names for
various features, for the benefit of people who are already familiar with OpenType. You
can ignore the codes if they don’t mean anything to you.

1.1 How to select font features
Font features are selected by a series of ⟨feature⟩=⟨option⟩ selections. Features are (usu-
ally) grouped logically; for example, all font features relating to ligatures are accessed by
writing Ligatures={...} with the appropriate argument(s), which could be TeX, Rare,
etc., as shown below in 3.1.8.

Multiple options may be given to any feature that accepts non-numerical input, al-
though doing so will not always work. Some options will override others in generally
obvious ways; Numbers={OldStyle,Lining} doesn’t make much sense because the two
options aremutually exclusive, and XƎTEXwill simply use the last option that is specified
(in this case using Lining over OldStyle).

If a feature or an option is requested that the font does not have, a warning is given
in the console output. As mentioned in Section 3.4 on page 7 these warnings can be
suppressed by selecting the [quiet] package option.

36

1.2 How do I know what font features are supported by my fonts?
Although I’ve long desired to have a feature within fontspec to display the OpenType
features within a font, it’s never been high on my priority list. One reason for that is
the existence of the document opentype-info.tex, which is available on CTAN or typing
kpsewhich opentype-info.tex in a Terminalwindow.Make a copy of this file and place
it somewhere convenient. Then open it in your regular TEX editor and change the font
name to the font you’d like to query; after running through plain XƎTEX, the output PDF
will look something like this:

OpenType Layout features found in ‘[Asana-Math.otf]’
script = ’DFLT’

language = ⟨default⟩
features = ’onum’ ’salt’ ’kern’

script = ’cher’
language = ⟨default⟩

features = ’onum’ ’salt’ ’kern’

script = ’grek’
language = ⟨default⟩

features = ’onum’ ’salt’ ’ssty’ ’kern’

script = ’latn’
language = ⟨default⟩

features = ’dtls’ ’onum’ ’salt’ ’ssty’ ’kern’

script = ’math’
language = ⟨default⟩

features = ’dtls’ ’onum’ ’salt’ ’ssty’ ’kern’

I intentionally picked a font above that by design contains few font features; ‘regular’ text
fonts such as LatinModernRoman containmanymore, and I didn’twant to clutter up the
document too much. After finding the scripts, languages, and features contained within
the font, you’ll then need to cross-check the OpenType tags with the ‘logical’ names used
by fontspec.

otfinfo Alternatively, and more simply, you can use the command line tool otfinfo,
which is distributed with TEXLive. Simply type in a Terminal window, say:

otfinfo -f `kpsewhich lmromandunh10-oblique.otf`

which results in:

aalt Access All Alternates
cpsp Capital Spacing
dlig Discretionary Ligatures
frac Fractions
kern Kerning
liga Standard Ligatures
lnum Lining Figures

37

onum Oldstyle Figures
pnum Proportional Figures
size Optical Size
tnum Tabular Figures
zero Slashed Zero

2 OpenType scripts and languages
Fonts that include glyphs for various scripts and languages may contain different font
features for the different character sets and languages they support, and different font
features may behave differently depending on the script or language chosen. When mul-
tilingual fonts are used, it is important to select which language they are being used for,
and more importantly what script is being used.

The ‘script’ refers to the alphabet in use; for example, both English and French use
the Latin script. Similarly, the Arabic script can be used to write in both the Arabic and
Persian languages.

The Script and Language features are used to designate this information. The pos-
sible options are tabulated in Table 2 on the following page and Table 3 on page 40,
respectively. When a script or language is requested that is not supported by the current
font, a warning is printed in the console output. See Section 2 on page 67 for methods to
create new Script or Language options if required.

Because these font features can change which features are able to be selected for the
font, the Script and Language settings are automatically selected by fontspec before all
others, and, if XƎTEX is being used, will specifically select the OpenType renderer for this
font, as described in Section 1.2 on page 61.

OpenType fonts can make available different font features depending on the Script
and Language chosen. In addition, these settings can also set up their own font behaviour
and glyph selection (one example is differences in style between some of the letters in the
alphabet used for Bulgarian, Serbian, and Russian). The fontspec feature LocalForms =
Offwill disable some of these substitutions if desired for some reason. It is important to
note that LocalForms = On is a default not of fontspec but of the underlying font shaping
engines in both XƎTEX and LuaTEX/otfload.

2.1 Script and Language examples
In the examples shown in Example 19, the Code2000 font5 is used to typeset various
input texts with and without the OpenType Script applied for various alphabets. The
text is only rendered correctly in the second case; many examples of incorrect diacritic
spacing as well as a lack of contextual ligatures and rearrangement can be seen. Thanks
to Jonathan Kew, Yves Codet and Gildas Hamel for their contributions towards these
examples.

5http://www.code2000.net/

38

http://www.code2000.net/

Example 19: An example of various Scripts and Languages.

العربي العربي

हिन्दी िहन्‍दी

লেখ েলখ

મર્યાદા-સૂચક નિવેદન મર્યાદા-સૂચક િનવેદન

നമ്മുടെ പാരബര്യ നമ്മുെട പാരബര്യ

ਆਦਿ ਸਚੁ ਜੁਗਾਦਿ ਸਚੁ ਆਿਦ ਸਚੁ ਜੁਗਾਿਦ ਸਚੁ

தமிழ் தேடி தமிழ் ேதடி

ִרְדָּֽתּה הּ רִדְתָּֽ

cấp số mỗi cấp số mỗi

\testfeature{Script=Arabic}{\arabictext}
\testfeature{Script=Devanagari}{\devanagaritext}
\testfeature{Script=Bengali}{\bengalitext}
\testfeature{Script=Gujarati}{\gujaratitext}
\testfeature{Script=Malayalam}{\malayalamtext}
\testfeature{Script=Gurmukhi}{\gurmukhitext}
\testfeature{Script=Tamil}{\tamiltext}
\testfeature{Script=Hebrew}{\hebrewtext}
\def\examplefont{DoulosSILR.ttf}
\testfeature{Language=Vietnamese}{\vietnamesetext}

Table 2: Defined Scripts for OpenType fonts. Aliased names are shown in adjacent po-
sitions marked with red pilcrows (¶).

Adlam
Ahom
Anatolian Hieroglyphs
Arabic
Armenian
Avestan
Balinese
Bamum
Bassa Vah
Batak
Bengali
Bhaiksuki
Bopomofo
Brahmi
Braille
Buginese
Buhid
Byzantine Music
Canadian Syllabics
Carian
Caucasian Albanian
Chakma
Cham
Cherokee

¶CJK
¶CJK Ideographic
Coptic
Cypriot Syllabary
Cyrillic
Default
Deseret
Devanagari
Duployan
Egyptian Hieroglyphs
Elbasan
Ethiopic
Georgian

Glagolitic
Gothic
Grantha
Greek
Gujarati
Gurmukhi
Hangul Jamo
Hangul
Hanunoo
Hatran
Hebrew

¶Hiragana and Katakana
¶Kana
Imperial Aramaic
Inscriptional Pahlavi
Inscriptional Parthian
Javanese
Kaithi
Kannada
Kayah Li
Kharosthi
Khmer
Khojki
Khudawadi
Lao
Latin
Lepcha
Limbu
Linear A
Linear B
Lisu
Lycian
Lydian
Mahajani
Malayalam
Mandaic
Manichaean

Marchen
¶Math
¶Maths
Meitei Mayek
Mende Kikakui
Meroitic Cursive
Meroitic Hieroglyphs
Miao
Modi
Mongolian
Mro
Multani
Musical Symbols
Myanmar

¶N’Ko
¶N’ko
Nabataean
Newa
Ogham
Ol Chiki
Old Italic
Old Hungarian
Old North Arabian
Old Permic
Old Persian Cuneiform
Old South Arabian
Old Turkic

¶Oriya
¶Odia
Osage
Osmanya
Pahawh Hmong
Palmyrene
Pau Cin Hau
Phags-pa
Phoenician
Psalter Pahlavi

Rejang
Runic
Samaritan
Saurashtra
Sharada
Shavian
Siddham
Sign Writing
Sinhala
Sora Sompeng
Sumero-Akkadian
Cuneiform
Sundanese
Syloti Nagri
Syriac
Tagalog
Tagbanwa
Tai Le
Tai Lu
Tai Tham
Tai Viet
Takri
Tamil
Tangut
Telugu
Thaana
Thai
Tibetan
Tifinagh
Tirhuta
Ugaritic Cuneiform
Vai
Warang Citi
Yi

39

Table 3: Defined Languages for OpenType fonts. Aliased names are shown in adjacent positions marked with red
pilcrows (¶).

Abaza
Abkhazian
Adyghe
Afrikaans
Afar
Agaw
Altai
Amharic
Arabic
Aari
Arakanese
Assamese
Athapaskan
Avar
Awadhi
Aymara
Azeri
Badaga
Baghelkhandi
Balkar
Baule
Berber
Bench
Bible Cree
Belarussian
Bemba
Bengali
Bulgarian
Bhili
Bhojpuri
Bikol
Bilen
Blackfoot
Balochi
Balante
Balti
Bambara
Bamileke
Breton
Brahui
Braj Bhasha
Burmese
Bashkir
Beti
Catalan
Cebuano
Chechen
Chaha Gurage
Chattisgarhi
Chichewa
Chukchi
Chipewyan
Cherokee
Chuvash
Comorian
Coptic
Cree
Carrier
Crimean Tatar
Church Slavonic
Czech
Danish
Dargwa
Woods Cree
German

Default
Dogri
Divehi
Djerma
Dangme
Dinka
Dungan
Dzongkha
Ebira
Eastern Cree
Edo
Efik
Greek
English
Erzya
Spanish
Estonian
Basque
Evenki
Even
Ewe
French Antillean

¶Farsi
¶Parsi
¶Persian
Finnish
Fijian
Flemish
Forest Nenets
Fon
Faroese
French
Frisian
Friulian
Futa
Fulani
Ga
Gaelic
Gagauz
Galician
Garshuni
Garhwali
Ge’ez
Gilyak
Gumuz
Gondi
Greenlandic
Garo
Guarani
Gujarati
Haitian
Halam
Harauti
Hausa
Hawaiin
Hammer-Banna
Hiligaynon
Hindi
High Mari
Hindko
Ho
Harari
Croatian
Hungarian
Armenian

Igbo
Ijo
Ilokano
Indonesian
Ingush
Inuktitut
Irish
Irish Traditional
Icelandic
Inari Sami
Italian
Hebrew
Javanese
Yiddish
Japanese
Judezmo
Jula
Kabardian
Kachchi
Kalenjin
Kannada
Karachay
Georgian
Kazakh
Kebena
Khutsuri Georgian
Khakass
Khanty-Kazim
Khmer
Khanty-Shurishkar
Khanty-Vakhi
Khowar
Kikuyu
Kirghiz
Kisii
Kokni
Kalmyk
Kamba
Kumaoni
Komo
Komso
Kanuri
Kodagu
Korean Old Hangul
Konkani
Kikongo
Komi-Permyak
Korean
Komi-Zyrian
Kpelle
Krio
Karakalpak
Karelian
Karaim
Karen
Koorete
Kashmiri
Khasi
Kildin Sami
Kui
Kulvi
Kumyk
Kurdish
Kurukh
Kuy

Koryak
Ladin
Lahuli
Lak
Lambani
Lao
Latin
Laz
L-Cree
Ladakhi
Lezgi
Lingala
Low Mari
Limbu
Lomwe
Lower Sorbian
Lule Sami
Lithuanian
Luba
Luganda
Luhya
Luo
Latvian
Majang
Makua
Malayalam

Traditional
Mansi
Marathi
Marwari
Mbundu
Manchu
Moose Cree
Mende
Me’en
Mizo
Macedonian
Male
Malagasy
Malinke
Malayalam

Reformed
Malay
Mandinka
Mongolian
Manipuri
Maninka
Manx Gaelic
Moksha
Moldavian
Mon
Moroccan
Maori
Maithili
Maltese
Mundari
Naga-Assamese
Nanai
Naskapi
N-Cree
Ndebele
Ndonga
Nepali
Newari
Nagari

Norway House Cree
Nisi
Niuean
Nkole
N’ko
Dutch
Nogai
Norwegian
Northern Sami
Northern Tai
Esperanto
Nynorsk
Oji-Cree
Ojibway
Oriya
Oromo
Ossetian
Palestinian Aramaic
Pali
Punjabi
Palpa
Pashto
Polytonic Greek
Pilipino
Palaung
Polish
Provencal
Portuguese
Chin
Rajasthani
R-Cree
Russian Buriat
Riang
Rhaeto-Romanic
Romanian
Romany
Rusyn
Ruanda
Russian
Sadri
Sanskrit
Santali
Sayisi
Sekota
Selkup
Sango
Shan
Sibe
Sidamo
Silte Gurage
Skolt Sami
Slovak
Slavey
Slovenian
Somali
Samoan
Sena
Sindhi
Sinhalese
Soninke
Sodo Gurage
Sotho
Albanian
Serbian
Saraiki

Serer
South Slavey
Southern Sami
Suri
Svan
Swedish
Swadaya Aramaic
Swahili
Swazi
Sutu
Syriac
Tabasaran
Tajiki
Tamil
Tatar
TH-Cree
Telugu
Tongan
Tigre
Tigrinya
Thai
Tahitian
Tibetan
Turkmen
Temne
Tswana
Tundra Nenets
Tonga
Todo
Turkish
Tsonga
Turoyo Aramaic
Tulu
Tuvin
Twi
Udmurt
Ukrainian
Urdu
Upper Sorbian
Uyghur
Uzbek
Venda
Vietnamese
Wa
Wagdi
West-Cree
Welsh
Wolof
Tai Lue
Xhosa
Yakut
Yoruba
Y-Cree
Yi Classic
Yi Modern
Chinese Hong Kong
Chinese Phonetic
Chinese Simplified
Chinese Traditional
Zande
Zulu

40

3 OpenType font features
There are a finite set of OpenType font features, and fontspec provides an interface to
around half of them. Full documentation will be presented in the following sections,
including how to enable and disable individual features, and how they interact.

A brief reference is provided (Table 4 on the following page) but note that this is an
incomplete listing — only the ‘enable’ keys are shown, and where alternative interfaces
are provided for convenience only the first is shown. (E.g., Numbers=OldStyle is the same
as Numbers=Lowercase.)

For completeness, the complete list of OpenType features not provided with a
fontspec interface is shown in Table 5 on page 43. Features omitted are partially by de-
sign and partially by oversight; for example, the aalt feature is largely useless in TEX
since it is designed for providing a GUI interface for selecting ‘all alternates’ of a glyph.
Others, such as optical bounds for example, simply haven’t yet been considered due to
a lack of fonts available for testing. Suggestions welcome for how/where to add these
missing features to the package.

3.1 Tag-based features
3.1.1 Alternates — salt

The Alternate feature, alias StylisticAlternates, is used to access alternate font
glyphs when variations exist in the font, such as in Example 20. It uses a numeri-
cal selection, starting from zero, that will be different for each font. Note that the
Style=Alternate option is equivalent to Alternate=0 to access the default case.

Note that the indexing starts from zero.With the LuaTEX engine, Alternate=Random
selects a random alternate.

See Section 1 on page 66 for a way to assign names to alternates if desired.

3.1.2 Character Variants — cvNN

‘Character Variations’ are selected numerically to adjust the output of (usually) a single
character for the particular font. These correspond to theOpenType features cv01 to cv99.

For each character that can be varied, it is possible to select among possible options
for that particular glyph. For example, in the hypothetical example below, variants are
chosen for glyphs ‘4’ and ‘5’, and the trailing :⟨n⟩ corresponds towhich variety to choose.

\fontspec{CV Font}[CharacterVariant={4,5:2}] \& violet

Example 20: The Alternate feature.

a & h
 & h

\fontspec{LinLibertine_R.otf}
\textsc{a} \& h \\
\addfontfeature{Alternate=0}
\textsc{a} \& h

41

Table 4: Summary of OpenType features in fontspec, alphabetic by feature tag.

ABVM Diacritics=AboveBase Above-base Mark
Positioning

AFRC Fractions=Alternate Alternative Fractions
BLWM Diacritics=BelowBase Below-base Mark

Positioning
CALT Contextuals=Alternate Contextual Alternates
CASE Style=Uppercase Case-Sensitive Forms
CLIG Ligatures=Contextual Contextual Ligatures
CPSP Kerning=Uppercase Capital Spacing
CSWH Contextuals=Swash Contextual Swash
CVNN CharacterVariant = N :M Character Variant N

C2PC Letters = UppercasePetiteCaps Petite Capitals From
Capitals

C2SC Letters = UppercaseSmallCaps Small Capitals From
Capitals

DLIG Ligatures=Rare Discretionary Ligatures
DNOM VerticalPosition = Denominator Denominators
EXPT CJKShape=Expert Expert Forms
FALT Contextuals=LineFinal Final Glyph on Line

Alternates
FINA Contextuals=WordFinal Terminal Forms
FRAC Fractions=On Fractions
FWID CharacterWidth=Full Full Widths
HALT CharacterWidth = AlternateHalf Alternate Half Widths
HIST Style=Historic Historical Forms
HKNA Style=HorizontalKana Horizontal Kana Alternates
HLIG Ligatures=Historic Historical Ligatures
HWID CharacterWidth=Half Half Widths
INIT Contextuals=WordInitial Initial Forms
ITAL Style= Italic Italics
JP78 CJKShape= JIS1978 JIS78 Forms
JP83 CJKShape= JIS1983 JIS83 Forms
JP90 CJKShape= JIS1990 JIS90 Forms
JP04 CJKShape= JIS2004 JIS2004 Forms
KERN Kerning=On Kerning
LIGA Ligatures=Common Standard Ligatures
LNUM Numbers=Uppercase Lining Figures
LOCL LocalForms=On Localized Forms
MARK Diacritics=MarkToBase Mark Positioning
MEDI Contextuals= Inner Medial Forms
MKMK Diacritics=MarkToMark Mark to Mark Positioning
NALT Annotation=N Alternate Annotation Forms

NLCK CJKShape=NLC NLC Kanji Forms
NUMR VerticalPosition = Numerator Numerators
ONUM Numbers=Lowercase Oldstyle Figures
ORDN VerticalPosition = Ordinal Ordinals
ORNM Ornament=N Ornaments
PALT CharacterWidth = AlternateProportional Proportional Alternate

Widths
PCAP Letters=PetiteCaps Petite Capitals
PKNA Style=ProportionalKana Proportional Kana
PNUM Numbers=Proportional Proportional Figures
PWID CharacterWidth = Proportional Proportional Widths
QWID CharacterWidth=Quarter Quarter Widths
RAND Letters=Random Randomize
RLIG Ligatures=Required Required Ligatures
RUBY Style=Ruby Ruby Notation Forms
SALT Alternate=N Stylistic Alternates
SINF VerticalPosition = ScientificInferior Scientific Inferiors
SMCP Letters=SmallCaps Small Capitals
SMPL CJKShape=Simplified Simplified Forms
SSNN StylisticSet=N Stylistic Set N

SSTY Style=MathScript Math script style alternates
SUBS VerticalPosition = Inferior Subscript
SUPS VerticalPosition = Superior Superscript
SWSH Style=Swash Swash
TITL Style=Titling Titling
TNUM Numbers=Monospaced Tabular Figures
TRAD CJKShape=Traditional Traditional Forms
TWID CharacterWidth=Third Third Widths
UNIC Letters=Unicase Unicase
VALT Vertical = AlternateMetrics Alternate Vertical Metrics
VERT Vertical=Alternates Vertical Writing
VHAL Vertical=HalfMetrics Alternate Vertical Half

Metrics
VKNA Style=VerticalKana Vertical Kana Alternates
VKRN Vertical=Kerning Vertical Kerning
VPAL Vertical = ProportionalMetrics Proportional Alternate

Vertical Metrics
VRT2 Vertical=RotatedGlyphs Vertical Alternates and

Rotation
VRTR Vertical = AlternatesForRotation Vertical Alternates for

Rotation
ZERO Numbers=SlashedZero Slashed Zero

42

Table 5: List of unsupported OpenType features.

AALT Access All Alternates
ABVF Above-base Forms
ABVS Above-base Substitutions
AKHN Akhands
BLWF Below-base Forms
BLWS Below-base Substitutions
CCMP Glyph Composition /

Decomposition
CFAR Conjunct Form After Ro
CJCT Conjunct Forms
CPCT Centered CJK Punctuation
CURS Cursive Positioning
DIST Distances
DTLS Dotless Forms
FIN2 Terminal Forms #2
FIN3 Terminal Forms #3
FLAC Flattened accent forms
HALF Half Forms
HALN Halant Forms

HNGL Hangul
HOJO Hojo Kanji Forms
ISOL Isolated Forms
JALT Justification Alternates
LFBD Left Bounds
LJMO Leading Jamo Forms
LTRA Left-to-right alternates
LTRM Left-to-right mirrored

forms
MED2 Medial Forms #2
MGRK Mathematical Greek
MSET Mark Positioning via

Substitution
NUKT Nukta Forms
OPBD Optical Bounds
PREF Pre-Base Forms
PRES Pre-base Substitutions
PSTF Post-base Forms
PSTS Post-base Substitutions

RCLT Required Contextual
Alternates

RKRF Rakar Forms
RPHF Reph Forms
RTBD Right Bounds
RTLA Right-to-left alternates
RTLM Right-to-left mirrored

forms
RVRN Required Variation

Alternates
SIZE Optical size
STCH Stretching Glyph

Decomposition
TJMO Trailing Jamo Forms
TNAM Traditional Name Forms
VATU Vattu Variants
VJMO Vowel Jamo Forms

The numbering is entirely font-specific. Glyph ‘5’ might be the character ‘v’, for example.
Character variants are specifically designed not to conflict with each other, so you can
enable them individually per character. (Unlike stylistic alternates, say.) Note that the
indexing starts from zero.

3.1.3 Contextuals

This feature refers to substitutions of glyphs that vary ‘contextually’ by their relative po-
sition in a word or string of characters; features such as contextual swashes are accessed
via the options shown in Table 6.

Historic forms are accessed in OpenType fonts via the feature Style=Historic; this
is generally not contextual in OpenType, which is why it is not included in this feature.

3.1.4 Diacritics

Specifies how combining diacritics should be placed. These will usually be controlled
automatically according to the Script setting.

3.1.5 Fractions — frac

Activates the construction of ‘vulgar’ fractions using precomposed glyphs and/or sub-
script and superscript characters from within the font. Coverage will vary by font; see
Example 21. Some (Asian fonts predominantly) also provide for the Alternate option.

43

Table 6: Options for the OpenType font feature ‘Contextuals’.

Feature Option Tag
Contextuals = Swash cswh †

Alternate calt †
WordInitial init †
WordFinal fina †
LineFinal falt †
Inner medi †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Table 7: Options for the OpenType font feature ‘Diacritics’.

Feature Option Tag
Diacritics = MarkToBase mark †

MarkToMark mkmk †
AboveBase abvm †
BelowBase blwm †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Table 8: Options for the OpenType font feature ‘Fractions’.

Feature Option Tag
Fractions = On +frac

Off -frac
Reset
Alternate afrc †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Example 21: The Fractions feature.

¹⁄₂ ⁴⁷⁄₁₁ ¹⁄₁₀₀₀
½ 47/11

\setsansfont{IBMPlexSans-Regular.otf}[Fractions=On]
\setmonofont{IBMPlexMono-Regular.otf}[Fractions=On]

\sffamily 1/2 47/11 1/1000 \par
\ttfamily 1/2 47/11

44

3.1.6 Kerning — kern

Specifies how inter-glyph spacing should behave. Well-made fonts include information
for how differing amounts of space should be inserted between separate character pairs.
This kerning space is inserted automatically but in rare circumstances you may wish to
turn it off.

As briefly mentioned previously at the end of 3.1.7, the Uppercase option will add
a small amount of tracking between uppercase letters, seen in Example 22, which uses
the Romande fonts6 (thanks to Clea F. Rees for the suggestion). The Uppercase option
acts separately to the regular kerning controlled by the On/Off options.

3.1.7 Letters

The Letters feature specifies how the letters in the current font will look. OpenType
fonts may contain the following options: SmallCaps, PetiteCaps, UppercaseSmallCaps,
UppercasePetiteCaps, and Unicase. Additionally Uppercase and Lowercase are sup-
ported for all fonts in LuaTEX. In contrast to earlier version, the Uppercase and Lowercase
options turn the text into uppercase or lowercase and do not require the text to already
have the right casing. The old behavior of Uppercase is available with Style=Uppercase.
When the Uppercase option is selected, Style=Uppercase and Kerning=Uppercase are
automatically applied if supported by the font.

Petite caps are smaller than small caps. SmallCaps and PetiteCaps turn lowercase
letters into the smaller caps letters, whereas the Uppercase... options turn the capital
letters into the smaller caps (good, e.g., for applying to already uppercase acronyms like
‘NASA’). This difference is shown in Example 23. ‘Unicase’ is a weird hybrid of upper
and lower case letters.

3.1.8 Ligatures

Ligatures refer to the replacement of two separate characters with a specially drawn
glyph for functional or æsthetic reasons. The list of options, of which multiple may be
selected at one time, is shown in Table 11. A demonstration with the Linux Libertine
fonts7 is shown in Example 24.

6http://arkandis.tuxfamily.org/adffonts.html
7http://www.linuxlibertine.org/

Table 9: Options for the OpenType font feature ‘Kerning’.

Feature Option Tag
Kerning = On +kern

Off -kern
Reset
Uppercase cpsp †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

45

http://arkandis.tuxfamily.org/adffonts.html
http://www.linuxlibertine.org/

Example 22: Adding extra kerning for uppercase letters. (The difference is usually very small.)

UPPERCASE EXAMPLE
UPPERCASE EXAMPLE

\fontspec{RomandeADFStd-DemiBold.otf}
UPPERCASE EXAMPLE \\
\addfontfeature{Kerning=Uppercase}
UPPERCASE EXAMPLE

Table 10: Options for the OpenType font feature ‘Letters’.

Feature Option Tag
Letters = SmallCaps smcp †

PetiteCaps pcap †
UppercaseSmallCaps c2sc †
UppercasePetiteCaps c2pc †
Unicase unic †
Uppercase †
Lowercase †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Example 23: Small caps from lowercase or uppercase letters.

THIS SENTENCE no verb
this sentence no verb
THIS SENTENCE no verb

\fontspec{Coelac.otf}[Letters=SmallCaps]
THIS SENTENCE no verb \\
\fontspec{Coelac.otf}[Letters=UppercaseSmallCaps]
THIS SENTENCE no verb \\
\fontspec{Coelac.otf}[Letters=PetiteCaps]
THIS SENTENCE no verb

46

Note the additional features accessed with Ligatures=TeX. These are not actually
real OpenType features, but additions provided by luaotfload (i.e., LuaTEX only) to em-
ulate TEX’s behaviour for ASCII input of curly quotes and punctuation. In XƎTEX this
is achieved with the Mapping feature (see Section 1.1 on page 61) but for consistency
Ligatures=TeX will perform the same function as Mapping=tex-text.

3.1.9 Localised Forms — locl

This feature enables and disables glyph substitutions, etc., that are specific to the
Language selected in the font. This feature is automatically activated by default when
present, so it should not be generally necessary to use LocalForms = On. In certain sce-
narios it may be important to turn it Off (although nothing specifically springs to mind).

3.1.10 Numbers

The Numbers feature defines how numbers will look in the selected font, accepting op-
tions shown in Table 13.

The synonyms Uppercase and Lowercase are equivalent to Lining and OldStyle,
respectively. The differences have been shown previously in Section 2 on page 22. The
Monospaced option is useful for tabularmaterial when digits need to be vertically aligned.

The SlashedZero option replaces the default zero with a slashed version to prevent
confusion with an uppercase ‘O’, shown in Example 25.

The Arabic option (with tag anum) maps regular numerals to their Arabic script or
Persian equivalents based on the current Language setting (see Section 2 on page 38).
This option is based on a LuaTEX feature of the luaotfload package, not an OpenType
feature. (Thus, this feature is unavailable in XƎTEX.) This feature should be considered
deprecated; while there are no plans to remove it from this package, if its support is
dropped from the font loader it could disappear from fontspec with little notice.

3.1.11 Ornament — ornm

Ornaments are selected with the Ornament feature (OpenType feature ornm), selected
numerically such as for the Annotation feature.

Table 11: Options for the OpenType font feature ‘Ligatures’.

Feature Option Tag
Ligatures = Required rlig †

Common liga †
Contextual clig †
Rare/Discretionary dlig †
Historic hlig †
TeX tlig †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

47

Example 24: An example of the Ligatures feature.

strict→ strict
wurtzite → wurtzite
firefly→ firefly

\def\test#1#2{%
#2 \to {\addfontfeature{#1} #2}\\}

\fontspec{LinLibertine_R.otf}
\test{Ligatures=Historic}{strict}
\test{Ligatures=Rare}{wurtzite}
\test{Ligatures=CommonOff}{firefly}

Table 12: Options for the OpenType font feature ‘LocalForms’.

Feature Option Tag
LocalForms = On +locl

Off -locl
Reset

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Table 13: Options for the OpenType font feature ‘Numbers’.

Feature Option Tag
Numbers = Uppercase lnum †

Lowercase onum †
Lining lnum †
OldStyle onum †
Proportional pnum †
Monospaced tnum †
SlashedZero zero †
Arabic anum †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Example 25: The effect of the SlashedZero option.

0123456789 0123456789

\fontspec[Numbers=Lining]{texgyrebonum-regular.otf}
0123456789

\fontspec[Numbers=SlashedZero]{texgyrebonum-regular.otf}
0123456789

48

3.1.12 Style

‘Ruby’ refers to a small optical size, used in Japanese typography for annotations. For
fonts with multiple saltOpenType features, use the fontspec Alternate feature instead.

Example 26 shows an example of a font feature that involves glyph substitution for
particular letters within an alphabet. Other options in these categories operate in similar
ways, with the choice of how particular substitutions are organised with which feature
largely up to the font designer.

The Uppercase option is designed to select various uppercase forms for glyphs such
as accents and dashes, such as shown in Example 27; note the raised position of the hy-
phen to better match the surrounding letters. It will (probably) not actually map letters
to uppercase.8 This option used to be selected under the Letters feature, but moved
here as it generally does not actually affect the letters themselves. The Kerning feature
also contains an Uppercase option, which adds a small amount of spacing in between
letters (see 3.1.6 on page 45).

In other features, larger breadths of changes can be seen, covering the style of an
entire alphabet. For instance, in some Japanese fonts features such as Style=Italic or
Style=Ruby respectively change the style of all Latin characters to italic or all Hiragana
characters to a darker optical shape:

\fontspec{Hiragino Mincho Pro}
Latin \kana \\
\addfontfeature{Style={Italic, Ruby}}
Latin \kana

3.1.13 Stylistic Set variations — ssNN

This feature selects a ‘Stylistic Set’ variation, which usually corresponds to an alternate
glyph style for a range of characters (usually an alphabet or subset thereof). This feature
is specified numerically. These correspond to OpenType features ss01, ss02, etc.

Two demonstrations from the Junicode font9 are shown in Example 28 and Exam-
ple 29; thanks to Adam Buchbinder for the suggestion.

Multiple stylistic setsmaybe selected simultaneously bywriting, e.g., StylisticSet={1,2,3}.
The StylisticSet feature is a synonym of the Variant feature for AAT fonts. See

Section 1 on page 66 for a way to assign names to stylistic sets, which should be done on
a per-font basis.

8If you want automatic uppercase letters, look to LATEX’s \MakeUppercase command or, when using LuaTEX,
to the Letters feature.

9http://junicode.sf.net

Example 26: Example of the Alternate option of the Style feature.

MQW
MQW

\fontspec{Quattrocento-Regular.ttf}
M Q W \\
\addfontfeature{Style=Alternate}
M Q W

49

http://junicode.sf.net

Table 14: Options for the OpenType font feature ‘Style’.

Feature Option Tag
Style = Alternate salt †

Cursive curs †
Historic hist †
Italic ital †
Ruby ruby †
Swash swsh †
Titling titl †
Uppercase case †
HorizontalKana hkna †
VerticalKana vkna †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Example 27: An example of the Uppercase option of the Style feature.

UPPER-CASE example
UPPER-CASE example

\fontspec{LinLibertine_R.otf}
UPPER-CASE example \\
\addfontfeature{Style=Uppercase}
UPPER-CASE example

Example 28: Insular letterforms, as used in medieval Northern Europe, for the Junicode font ac-
cessed with the StylisticSet feature.

Insular forms.
Insular forms.

\fontspec{Junicode}
Insular forms. \\
\addfontfeature{StylisticSet=2}
Insular forms. \\

Example 29: Enlarged minuscules (capital letters remain unchanged) for the Junicode font, ac-
cessed with the StylisticSet feature.

ENLARGED Minuscules.
ENLARGED Minuscules.

\fontspec{Junicode}
ENLARGED Minuscules. \\
\addfontfeature{StylisticSet=6}
ENLARGED Minuscules. \\

50

3.1.14 Vertical Position

The VerticalPosition feature is used to access things like subscript (Inferior) and
superscript (Superior) numbers and letters (and a small amount of punctuation, some-
times). The Ordinal option will only raise characters that are used in some languages
directly after a number. The ScientificInferior feature will move glyphs further be-
low the baseline than the Inferior feature. These are shown in Example 30

Numerator and Denominator should only be used for creating arbitrary fractions
(see next section).

The realscripts package (which is also loaded by xltxtra for XƎTEX) redefines the
\textsubscript and \textsuperscript commands to use the above font features au-
tomatically, including for use in footnote labels. If this is the only feature of xltxtra you
wish to use, consider loading realscripts on its own instead.

3.2 CJK features
This section summarises the features which are largely intending for Chinese, Korean,
and Japanese typesetting.

3.2.1 Annotation — nalt

Some fonts are equipped with an extensive range of numbers and numerals in differ-
ent forms. These are accessed with the Annotation feature (OpenType feature nalt),
selected numerically. Note that the indexing starts from zero.

\fontspec{Hiragino Maru Gothic Pro}
1 2 3 4 5 6 7 8 9
\def\x#1{\\{\addfontfeature{Annotation=#1}

1 2 3 4 5 6 7 8 9 }}
\x0\x1\x2\x3\x4\x5\x6\x7\x7\x8\x9

Table 15: Options for the OpenType font feature ‘VerticalPosition’.

Feature Option Tag
VerticalPosition = Superior sups †

Inferior subs †
Numerator numr †
Denominator dnom †
ScientificInferior sinf †
Ordinal ordn †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

51

Example 30: The VerticalPosition feature.

Superior: ¹²³⁴⁵⁶⁷⁸⁹⁰
Numerator: 12345
Denominator: 12345
Scientific Inferior: ₁₂₃₄₅

\fontspec{LibreCaslonText-Regular.otf}[VerticalPosition=Superior]
Superior: 1234567890 \\
\fontspec{LibreCaslonText-Regular.otf}[VerticalPosition=Numerator]
Numerator: 12345 \\
\fontspec{LibreCaslonText-Regular.otf}[VerticalPosition=Denominator]
Denominator: 12345 \\
\fontspec{LibreCaslonText-Regular.otf}[VerticalPosition=ScientificInferior]
Scientific Inferior: 12345

3.2.2 Character width

Many Asian fonts are equipped with variously spaced characters for shoe-horning into
their generally monospaced text. These are accessed through the CharacterWidth fea-
ture.

Japanese alphabetic glyphs (in Hiragana or Katakana) may be typeset proportion-
ally, to better fit horizontal measures, or monospaced, to fit into the rigid grid imposed
by ideographic typesetting. In this latter case, there are also half-width forms for squeez-
ing more kana glyphs (which are less complex than the kanji they are amongst) into a
given block of space. The same features are given to roman letters in Japanese fonts, for
typesetting foreign words in the same style as the surrounding text. Example omitted
until I find an open source font which supports these features.

3.2.3 CJK shape

There have beenmany standards for howCJK ideographic glyphs are ‘supposed’ to look.
Some fonts will contain many alternate glyphs available in order to be able to display
these gylphs correctly in whichever form is appropriate. Both AAT and OpenType fonts
support the following CJKShape options: Traditional, Simplified, JIS1978, JIS1983,
JIS1990, and Expert. OpenType also supports the NLC option.

Table 16: Options for the OpenType font feature ‘CharacterWidth’.

Feature Option Tag
CharacterWidth = Proportional pwid †

Full fwid †
Half hwid †
Third twid †
Quarter qwid †
AlternateProportional palt †
AlternateHalf halt †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

52

Table 17: Options for the OpenType font feature ‘CJKShape’.

Feature Option Tag
CJKShape = Traditional trad

Simplified smpl
JIS1978 jp78
JIS1983 jp83
JIS1990 jp90
Expert expt
NLC nlck

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

Example 31: Different standards for CJK ideograph presentation.

唖噛躯妍并訝
啞嚙軀姸幷訝

\fontspec{NotoSansJP-Regular.ttf}
{\addfontfeature{CJKShape=Traditional}
\text } \\
{\addfontfeature{CJKShape=NLC}
\text }

3.2.4 Vertical typesetting

OpenType provides a plethora of features for accommodating the varieties of possibili-
ties needed for vertical typesetting (CJK and others). No capabilities for achieving such
vertical typesetting are provided by fontspec, however; please get in touch if there are
improvements that could be made.

53

Table 18: Options for the OpenType font feature ‘Vertical’.

Feature Option Tag
Vertical = RotatedGlyphs vrt2 †

AlternatesForRotation vrtr †
Alternates vert †
KanaAlternates vkna †
Kerning vkrn †
AlternateMetrics valt †
HalfMetrics vhal †
ProportionalMetrics vpal †
ResetAll

† These feature options can be disabled with ..Off variants, and reset
to default state (neither explicitly on nor off) with ..Reset.

54

Part V

Commands for accents and symbols
(‘encodings’)
The functionality described in this section is experimental.

In the pre-Unicode era, significant work was required by LATEX to ensure that input
characters in the source could be interpreted correctly depending on file encoding, and
that glyphs in the output were selected correctly depending on the font encoding. With
Unicode, we have the luxury of a single file and font encoding that is used for both input
and output.

While this may provide some illusion that we could get away simply with typing
Unicode text and receive correct output, this is not always the case. For a start, hyphen-
ation in particular is language-specific, so tags should be used when switch between
languages in a document. The babel and polyglossia packages both provide features for
this.

Multilingual documents will often use different fonts for different languages, not
just for style, but for the more pragmatic reason that fonts do not all contain the same
glyphs. (In fact, only test fonts such as Code2000 provide anywhere near the full Uni-
code coverage.) Indeed, certain fonts may be perfect for a certain application but miss a
handful of necessary diacritics or accented letters. In these cases, fontspec can leverage
the font encoding technology built into LATEX2 to provide on a per-font basis either pro-
vide fallback options or error messages when a desired accent or symbol is not available.
However, at present these features can only be provided for input using LATEX commands
rather than Unicode input; for example, typing \`e instead of è or \textcopyright in-
stead of © in the source file.

The most widely-used encoding in LATEX2ε was T1 with companion ‘TS1’ symbols
provided by the textcomp package. These encodings provided glyphs to typeset text
in a variety of western European languages. As with most legacy LATEX2ε input meth-
ods, accents and symbols were input using encoding-dependent commands such as \`e
as described above. As of 2017, in LATEX2ε on XƎTEX and LuaTEX, the default encoding
is TU, which uses Unicode for input and output. The TU encoding provides appropri-
ate encoding-dependent definitions for input commands to match the coverage of the
T1+TS1 encodings. Wider coverage is not provided by default since (a) each font will
provide different glyph coverage, and (b) it is expected that most users will be writing
with direct Unicode input.

For those users who do need finer-grained control, fontspec provides an interface
for a more extensible system.

1 A new Unicode-based encoding from scratch
Let’s say you need to provide support for a document originally written with fonts in
the OT2 encoding, which contains encoding-dependent commands for Cyrillic letters. An
example from the OT2 encoding definition file (ot2enc.def) reads:

55

57 \DeclareTextSymbol{\CYRIE}{OT2}{5}
58 \DeclareTextSymbol{\CYRDJE}{OT2}{6}
59 \DeclareTextSymbol{\CYRTSHE}{OT2}{7}
60 \DeclareTextSymbol{\cyrnje}{OT2}{8}
61 \DeclareTextSymbol{\cyrlje}{OT2}{9}
62 \DeclareTextSymbol{\cyrdzhe}{OT2}{10}

To recreate this encoding in a form suitable for fontspec, create a new file named,
say, fontrange-cyr.def and populate it with

...
\DeclareTextSymbol{\CYRIE} {\LastDeclaredEncoding}{"0404}
\DeclareTextSymbol{\CYRDJE} {\LastDeclaredEncoding}{"0402}
\DeclareTextSymbol{\CYRTSHE}{\LastDeclaredEncoding}{"040B}
\DeclareTextSymbol{\cyrnje} {\LastDeclaredEncoding}{"045A}
\DeclareTextSymbol{\cyrlje} {\LastDeclaredEncoding}{"0459}
\DeclareTextSymbol{\cyrdzhe}{\LastDeclaredEncoding}{"045F}
...

The numbers "0404, "0402, …, are the Unicode slots (in hexadecimal) of each glyph
respectively. The fontspecpackage provides a number of shorthands to simplify this style
of input; in this case, you could also write

\EncodingSymbol{\CYRIE}{"0404}
...

To use this encoding in a fontspec font, you would first add this to your preamble:

\DeclareUnicodeEncoding{unicyr}{
\input{fontrange-cyr.def}

}

Then follow it up with a font loading call such as

\setmainfont{...}[NFSSEncoding=unicyr]

The first argument unicyr is the name of the ‘encoding’ to use in the font family. (There’s
nothing special about the name chosen but it must be unique.) The second argument
to \DeclareUnicodeEncoding also allows adjustments to be made for per-font changes.
We’ll cover this use case in the next section.

2 Adjusting a pre-existing encoding
There are three reasons to adjust a pre-existing encoding: to add, to remove, and to rede-
fine some symbols, letters, and/or accents.

When adding symbols, etc., simply write

\DeclareUnicodeEncoding{unicyr}{
\input{tuenc.def}
\input{fontrange-cyr.def}
\EncodingSymbol{\textruble}{"20BD}

}

56

Of course if you consistently add a number of symbols to an encoding it would be a good
idea to create a new fontrange-XX.def file to suit your needs.

When removing symbols, use the \UndeclareSymbol{⟨cmd⟩} command. For exam-
ple, if you a loading a font that you know is missing, say, the interrobang (not that un-
usual a situation), you might write:

\DeclareUnicodeEncoding{nobang}{
\input{tuenc.def}
\UndeclareSymbol\textinterrobang

}

Provided that you use the command \textinterrobang to typeset this symbol, it will
appear in fonts with the default encoding, while in any font loaded with the nobang
encoding an attempt to access the symbol will either use the default fallback definition
or return an error, depending on the symbol being undeclared.

The third use case is to redefine a symbol or accent. The most common use case in
this scenario is to adjust a specific accent command to either fine-tune its placement or
to ‘fake’ it entirely. For example, the underdot diacritic is used in typeset Sanskrit, but
it is not necessarily included as an accent symbol is all fonts. By default the underdot is
defined in TU as:

\EncodingAccent{\d}{"0323}

For fonts with amissing (or poorly-spaced) "0323 accent glyph, the ‘traditional’ TEX fake
accent construction could be used instead:

\DeclareUnicodeEncoding{fakeacc}{
\input{tuenc.def}
\EncodingCommand{\d}[1]{%
\hmode@bgroup
\o@lign{\relax#1\crcr\hidewidth\ltx@sh@ft{-1ex}.\hidewidth}%

\egroup
}

}

This would be set up in a document as such:

\newfontfamily\sanskitfont{CharisSIL}
\newfontfamily\titlefont{Posterama}[NFSSEncoding=fakeacc]

Then later in the document, no additional work is needed:

...{\titlefont kalita\d m}... % <- uses fake accent

...{\sanskitfont kalita\d m}... % <- uses real accent

To reiterate from above, typing this input with Unicode text (‘kalitaṃ’) will bypass this
encoding mechanism and you will receive only what is contained literally within the
font.

57

3 Summary of commands
The LATEX2ε kernel provides the following font encoding commands suitable forUnicode
encodings:

\DeclareTextCommand{⟨command⟩}{⟨encoding⟩}[⟨num⟩][⟨default⟩]{⟨code⟩}
\DeclareUnicodeAccent{⟨command⟩}{⟨encoding⟩}{⟨slot⟩}
\DeclareTextSymbol{⟨command⟩}{⟨encoding⟩}{⟨slot⟩}
\DeclareTextComposite{⟨command⟩}{⟨encoding⟩}{⟨letter⟩}{⟨slot⟩}
\DeclareTextCompositeCommand{⟨command⟩}{⟨encoding⟩}{⟨letter⟩}{⟨code⟩}
\UndeclareTextCommand{⟨command⟩}{⟨encoding⟩}

See fntguide.pdf for full documentation of these. As shown above, the following short-
hands are provided by fontspec to simplify the process of defining Unicode font range
encodings:

\EncodingCommand{⟨command⟩}[⟨num⟩][⟨default⟩]{⟨code⟩}
\EncodingAccent{⟨command⟩}{⟨code⟩}
\EncodingSymbol{⟨command⟩}{⟨code⟩}
\EncodingComposite{⟨command⟩}{⟨letter⟩}{⟨slot⟩}
\EncodingCompositeCommand{⟨command⟩}{⟨letter⟩}{⟨code⟩}
\UndeclareSymbol{⟨command⟩}
\UndeclareAccent{⟨command⟩}
\UndeclareCommand{⟨command⟩}
\UndeclareComposite{⟨command⟩}{⟨letter⟩}

58

Part VI

LuaTEX-only font features
1 Different font technologies and shapers
LuaTEX does not directly support any font rendering technologies out of the box, it re-
quires additional functionality to be added to properly support and control technologies
such as OpenType.

Using the Renderer feature, there are a number of options that fontspec can pass
to the engine to control which font technology is being used. Pre-2019, there were two
options provided by luaotfload that generally did not require user intervention.

• Renderer = Node : the default ‘mode’ for typesetting OpenType fonts.

• Renderer = Base : a simplified mode useful only in a limited number of situations
such as mathematics typesetting.

From 2019 the possibility of using the Harfbuzz text shaping engine within LuaTEX
has been developed by Khaled Hosny. When running a suitable LuaTEX engine with
Harfbuzz support, fontspec provides the following options:

• Renderer = HarfBuzz : use the Harfbuzz engine without an explicit ‘shaper’ (the
old Harfbuzz name is kept for compatibility).

• Renderer = OpenType : use the Harfbuzz engine with the OpenType shaper.

• Renderer = AAT : use the Harfbuzz engine with the AAT shaper.

• Renderer = Graphite : use the Harfbuzz engine with the Graphite shaper.

• Renderer = ⟨foo⟩ : use the Harfbuzz engine with the ⟨foo⟩ shaper.

Support for the Harfbuzz renderer is preliminary and may be improved over time.
Please treat the interface for Harfbuzz fonts as subject to change.

2 Custom font features
LuaTEX, via the luaotfload package, allows the definition and re-definition of custom
OpenType features for a selected font. This facility is particularly useful to implement
custom substitutions or to disable unwanted but not all ligatures.

Figure 1 shows an minimal example of this type of functionality. This example cre-
ates a new OpenType feature, oneb, which substitutes the glyph when typesetting ‘1’ for
the named glyph one.ss01. The glyph names are font specific and can be interrogated
with third-party software such as FontForge.

A third-party collection of additional examples are maintained in the repository
‘fonts-in-luatex’10. These examples are intended to correct or adjust font features in a
range of commercial fonts and provide a good introduction to some of the possibilities
that LuaTEX affords.

Please refer to the LuaTEX/luaotfload documentation for more details.
10https://github.com/mewtant/fonts-in-luatex

59

https://github.com/mewtant/fonts-in-luatex

Figure 1: An example of custom font features.

\documentclass{article}
\usepackage{fontspec}
\directlua{

fonts.handlers.otf.addfeature {
name = "oneb",
type = "substitution",
data = {

["1"] = "one.ss01",
}

}
}
\setmainfont{Vollkorn-Regular.otf}[RawFeature=+oneb]
\begin{document}
1234567890
\end{document}

60

Part VII

Fonts and features with XƎTEX
1 XƎTEX-only font features
The features described here are available for any font selected by fontspec.

1.1 Mapping
The Mapping feature enables a XƎTEX text-mapping scheme, with an example shown in
Example 32.

Only one mapping can be active at a time and a second call to Mappingwill override
the first. Using the tex-textmapping is also equivalent to writing Ligatures=TeX. The
use of the latter syntax is recommended for better compatibility with LuaTEX documents.

1.2 Different font technologies: AAT, OpenType, and Graphite
Note that from 2020 it appears that XƎTEX can no longer support AAT fonts in macOS.

XƎTEX supports three rendering technologies for typesetting, selected with the
Renderer font feature. The first, AAT, is that provided only by macOS. The second,
OpenType, is an open source OpenType interpreter. It provides greater support for Open-
Type features, notably contextual arrangement, over AAT. The third is Graphite, which
is an alternative to OpenType with particular features for less-common languages and
the capability for more powerful font options. Features for OpenType have already been
discussed in IV on page 36; Graphite and AAT features are discussed later in Section 2
on the following page and Section 3 on the next page.

Unless you have a particular need, the Renderer feature is rarely explicitly required:
for OpenType fonts, the OpenType renderer is used automatically, and for AAT fonts, AAT
is chosen by default. Some fonts, however, will contain font tables for multiple rendering
technologies, such as the Hiragino Japanese fonts distributed with macOS, and in these
cases one over the other may be preferred.

Among someother font features only available through a specific renderer, OpenType
provides for the Script and Language features, which allow different font behaviour for
different alphabets and languages; see Section 2 on page 38 for the description of these
features. Because these font features can change which features are able to be selected for the
font instance, they are selected by fontspec before all others and will automatically and without
warning select the OpenType renderer.

Example 32: XƎTEX’s Mapping feature.

“¡A small amount of—text!”
\fontspec{texgyrepagella-regular.otf}[Mapping=tex-text]
``!`A small amount of---text!''

61

1.3 Vertical typesetting
XƎTEX provides for vertical typesetting simply with the ability to rotate the individual
glyphs as a font is used for typesetting:

\def\verttext{������}
\fontspec{Hiragino Mincho Pro}
\verttext

\fontspec{Hiragino Mincho Pro}[Renderer=AAT,Vertical=RotatedGlyphs]
\rotatebox{-90}{\verttext}% requires the graphicx package

Noactual provision ismade for typesetting top-to-bottom languages; for an example
of how to do this, see the vertical Chinese example provided in the XƎTEX documentation.

2 The Graphite renderer
Since the Graphite renderer is designed for less common scripts and languages, usually
with specific or unique requirements, Graphite features are not standard across fonts.

Currently fontspec does not support a convenient interface to select Graphite font
features and all selection must be done via ‘raw’ font feature selection.

Here’s an example:

\fontspec{Charis SIL}[
Renderer=Graphite,
RawFeature={Uppercase Eng alternates=Large eng on baseline}]

Ŋ

Here’s another:

\fontspec{AwamiNastaliq-Regular.ttf}[Renderer=Graphite] ^^^^06b5
\addfontfeature{RawFeature={Lam with V=V over bowl}} ^^^^06b5

3 macOS’s AAT fonts
Warning! XƎTEX’s implementation on macOS is currently in a state of flux and the
information contained below may well be wrong from 2013 onwards. There is a good
chance that the features described in this section will not be available any more as
XƎTEX’s completes its transition to a cross-platform–only application. All examples
in this section have now been removed.

macOS’s font technology began life before the ubiquitous-OpenType era and re-
volved around the Apple-invented ‘AAT’ font format. This format had some advantages
(and other disadvantages) but it never became widely popular in the font world.

Nonetheless, this is the font format that was first supported by XƎTEX (due to its
pedigree onmacOS in the first place) andwas the first font format supported by fontspec.
A number of fonts distributed with macOS are still in the AAT format, such as ‘Skia’.

62

3.1 Ligatures
Ligatures refer to the replacement of two separate characters with a specially drawn
glyph for functional or æsthetic reasons. For AAT fonts, you may choose from any
combination of Required, Common, Rare (or Discretionary), Logos, Rebus, Diphthong,
Squared, AbbrevSquared, and Icelandic.

Some other Apple AAT fonts have those ‘Rare’ ligatures contained in the Icelandic
feature. Notice also that the old TEX trick of splitting up a ligature with an empty brace
pair does not work in XƎTEX; you must use a 0 pt kern or \hbox (e.g., \null) to split the
characters up if you do notwant a ligature to be performed (the usual examples forwhen
this might be desired are words like ‘shelffull’).

3.2 Letters
The Letters feature specifies how the letters in the current font will look. For AAT fonts,
you may choose from Normal, Uppercase, Lowercase, SmallCaps, and InitialCaps.

3.3 Numbers
The Numbers feature defines how numbers will look in the selected font. For AAT fonts,
theymay be a combination of Lining or OldStyle and Proportional or Monospaced (the
latter is good for tabular material). The synonyms Uppercase and Lowercase are equiv-
alent to Lining and OldStyle, respectively. The differences have been shown previously
in Section 2 on page 22.

3.4 Contextuals
This feature refers to glyph substitution that vary by their position; things like contextual
swashes are implemented here. The options for AAT fonts are WordInitial, WordFinal
(Example ??), LineInitial, LineFinal, and Inner (Example ??, also called ‘non-final’
sometimes). As non-exclusive selectors, like the ligatures, you can turn them off by pre-
fixing their name with No.

3.5 Vertical position
The VerticalPosition feature is used to access things like subscript (Inferior) and
superscript (Superior) numbers and letters (and a small amount of punctuation, some-
times). The Ordinal option is (supposed to be) contextually sensitive to only raise char-
acters that appear directly after a number.

The realscripts package redefines the \textsubscript and \textsuperscript com-
mands to use the above font features, including for use in footnote labels.

3.6 Fractions
Many fonts come with the capability to typeset various forms of fractional material. This
is accessed in fontspec with the Fractions feature, which may be turned On or Off in
both AAT and OpenType fonts.

63

In AAT fonts, the ‘fraction slash’ or solidus character, is to be used to create fractions.
When Fractions are turned On, then only pre-drawn fractions will be used.

Using the Diagonal option (AAT only), the font will attempt to create the fraction
from superscript and subscript characters.

Some (Asian fonts predominantly) also provide for the Alternate feature.

3.7 Variants
The Variant feature takes a single numerical input for choosing different alphabetic
shapes. See Section 1 on page 66 for a way to assign names to variants, which should
be done on a per-font basis.

3.8 Alternates
Selection of Alternates again must be done numerically. See Section 1 on page 66 for a
way to assign names to alternates, which should be done on a per-font basis.

3.9 Style
The options of the Style feature are defined in AAT as one of the following: Display,
Engraved, IlluminatedCaps, Italic, Ruby,11 TallCaps, or Titling.

Typical examples for these features are shown in 3.1.12.

3.10 CJK shape
There have beenmany standards for howCJK ideographic glyphs are ‘supposed’ to look.
Some fonts will contain many alternate glyphs in order to be able to display these gylphs
correctly in whichever form is appropriate. Both AAT and OpenType fonts support the
following CJKShape options: Traditional, Simplified, JIS1978, JIS1983, JIS1990, and
Expert. OpenType also supports the NLC option.

3.11 Character width
See 3.2.2 on page 52 for relevant examples; the features are the same between OpenType
and AAT fonts. AAT also allows CharacterWidth=Default to return to the original font
settings.

3.12 Diacritics
Diacritics are marks, such as the acute accent or the tilde, applied to letters; they usu-
ally indicate a change in pronunciation. In Arabic scripts, diacritics are used to indicate
vowels. You may either choose to Show, Hide or Decompose them in AAT fonts. The Hide
option is for scripts such as Arabic which may be displayed either with or without vowel
markings. E.g., \fontspec[Diacritics=Hide]{...}

Some older fonts distributed with macOS included ‘O/’ etc. as shorthand for writ-
ing ‘Ø’ under the label of the Diacritics feature. If you come across such fonts, you’ll

11‘Ruby’ refers to a small optical size, used in Japanese typography for annotations.

64

want to turn this feature off (imagine typing hello/goodbye and getting ‘helløgoodbye’
instead!) by decomposing the two characters in the diacritic into the ones you actually
want. I recommend using the proper LATEX input conventions for obtaining such charac-
ters instead.

3.13 Annotation
Various Asian fonts are equipped with a more extensive range of numbers and nu-
merals in different forms. These are accessed through the Annotation feature with the
following options: Off, Box, RoundedBox, Circle, BlackCircle, Parenthesis, Period,
RomanNumerals, Diamond, BlackSquare, BlackRoundSquare, and DoubleCircle.

65

Part VIII

Customisation and programming
interface
This chapter describes the current interfaces and hooks that use fontspec for various
macro programming purposes.

1 Defining new features
This package cannot hope to contain every possible font feature. Three commands are
provided for selecting font features that are not provided for out of the box. If you are
using them a lot, chances are I’ve left something out, so please let me know.

New AAT features may be created with this command:\newAATfeature
\newAATfeature{⟨feature⟩}{⟨option⟩}{⟨feature code⟩}{⟨selector code⟩}

Use the XƎTEX file AAT-info.tex to obtain the code numbers.

\newAATfeature{Alternate}{HoeflerSwash}{17}{1}
\fontspec{Hoefler Text Italic}[Alternate=HoeflerSwash]
This is XeTeX by Jonathan Kew.

New OpenType features may be created with this command:\newopentypefeature
\newopentypefeature{⟨feature⟩}{⟨option⟩}{⟨feature tag⟩}

The synonym \newICUfeature is deprecated.
Here’s what it would look like in practise:

\newopentypefeature{Style}{NoLocalForms}{-locl}

In case the above commands do not accommodate the desired font feature (perhaps\newfontfeature
a new XƎTEX feature that fontspec hasn’t been updated to support), a command is pro-
vided to pass arbitrary input into the font selection string:

\newfontfeature{⟨name⟩}{⟨input string⟩}
For example, Zapfino used to contain an AAT feature ‘Avoid d-collisions’. To access

it with this package, you could do some like the following:

\newfontfeature{AvoidD} {Special= Avoid d-collisions}
\newfontfeature{NoAvoidD}{Special=!Avoid d-collisions}
\fontspec{Zapfino}[AvoidD,Variant=1]
sockdolager rubdown \\
\fontspec{Zapfino}[NoAvoidD,Variant=1]
sockdolager rubdown

The advantage to using the \newAATfeature and \newopentypefeature commands
instead of \newfontfeature is that they check if the selected font actually contains the
desired font feature at load time. By contrast, \newfontfeature will not give a warning
for improper input.

66

2 Defining new scripts and languages
While the scripts and languages listed in Table 2 and Table 3 are intended to be compre-\newfontscript

\newfontlanguage hensive, theremay be somemissing; alternatively, youmight wish to use different names
to access scripts/languages that are already listed. Adding scripts and languages can be
performed with the \newfontscript and \newfontlanguage commands. For example,

\newfontscript{Arabic}{arab}
\newfontlanguage{Zulu}{ZUL}

The first argument is the fontspec name, the second the OpenType tag. The advantage
to using these commands rather than \newfontfeature (see Section 1 on the previous
page) is the error-checking that is performed when the script or language is requested.

Both commands accept a comma-separated list of OpenType tags in order of prefer-
ence. This permits, for example, supporting both new and old versions of a language tag
with a common user interface:

\newfontlanguage{Turkish}{TRK,TUR}

Here, a font that is requestedwith Script=Turkishwill first be checked for theOpenType
language tag TRK, which will be selected if available. If not available, the TUR tag will be
queried and used if possible as a fallback.

3 Going behind fontspec’s back
Expert users may wish not to use fontspec’s feature handling at all, while still taking
advantage of its LATEX font selection conveniences. The RawFeature font feature allows
font feature selection using a literal feature selection string if you happen to have the
OpenType feature tag memorised. More importantly, this can be used to enable features
for which fontspec does not yet have a user interface to.

Multiple features can either be included in a single declaration:
[RawFeature=+smcp;+onum]

or with multiple declarations:
[RawFeature=+smcp, RawFeature=+onum]

Note that there is no error-checking when using RawFeature. Where a fontspec in-
terface exists to a feature it is generally better to use it. If the font lacks the feature or if
it would clash with another feature, fontspec will attemmpt to warn and/or resolve the
issues.

Example 33: Using raw font features directly.

PAGELLA SMALL CAPS
\fontspec{texgyrepagella-regular.otf}[RawFeature=+smcp]
Pagella small caps

67

4 Renaming existing features & options
If you don’t like the name of a particular font feature, it may be aliased to another with\aliasfontfeature
the \aliasfontfeature{⟨existing name⟩}{⟨new name⟩} command, such as shown in Ex-
ample 34.

Spaces in feature (and option names, see below) are allowed. (Youmay have noticed
this already in the lists of OpenType scripts and languages).

If you wish to change the name of a font feature option, it can be aliased to another\aliasfontfeatureoption
with the command \aliasfontfeatureoption{⟨font feature⟩}{⟨existing name⟩}{⟨newname⟩},
such as shown in Example 35.

This example demonstrates an important point: when aliasing the feature options,
the original feature name must be used when declaring to which feature the option be-
longs.

Only feature options that exist as sets of fixed strings may be altered in this way.
That is, Proportional can be aliased to Prop in the Letters feature, but 550099BB
cannot be substituted for Purple in a Color specification. For this type of thing, the
\newfontfeature command should be used to declare a new, e.g., PurpleColor feature:

\newfontfeature{PurpleColor}{color=550099BB}

Except that this example was written before support for named colours was imple-
mented. But you get the idea.

5 Programming interface
5.1 Variables
In some cases, it is useful to know what the LATEX font family of a specific fontspec font\l_fontspec_family_tl

\l_fontspec_font is. After a \fontspec-like command, this is stored inside the \l_fontspec_family_tl
macro. Otherwise, LATEX’s own \f@family macro can be useful here, too. The raw TEX
font that is defined from the ‘base’ font in the family is stored in \l_fontspec_font.

Package authors who need to load fonts with legacy LATEX NFSS commands may also\g_fontspec_encoding_tl
need to know what the default font encoding is. Since this has changed from EU1/EU2 to
TU, it is best to use the variable \g_fontspec_encoding_tl instead.

Example 34: Renaming font features.

Roman LettersAnd Swash

\aliasfontfeature{ItalicFont}{IF}
\aliasfontfeature{ItalicFeatures}{IFF}
\setmainfont{ EBGaramond-Regular.otf }[

IF = EBGaramond-Italic.otf ,
IFF = {Style=Swash} ,

]
Roman Letters \itshape And Swash

68

Example 35: Renaming font feature options.

Sciₑntific Infₑriₒr: ₁₂₃₄₅

\aliasfontfeature{VerticalPosition}{Vert Pos}
\aliasfontfeatureoption{VerticalPosition}{ScientificInferior}{Sci Inf}
\fontspec{LinLibertine_R.otf}[Vert Pos=Sci Inf]
Scientific Inferior: 12345

5.2 Functions for loading new fonts and families
\fontspec_gset_family:Nnn
\fontspec_set_family:Nnn

#1 : LATEX family
#2 : fontspec features
#3 : font name

Defines a new NFSS family from given ⟨features⟩ and ⟨font⟩, and stores the fam-
ily name in the variable ⟨family⟩. This font family can then be selected with standard
LATEX commands \fontfamily{⟨family⟩}\selectfont. See the standard fontspec user
commands for applications of this function.

(End of definition for \fontspec_gset_family:Nnn and \fontspec_set_family:Nnn. These functions are docu-
mented on page ??.)

\fontspec_gset_fontface:NNnn
\fontspec_set_fontface:NNnn

#1 : primitive font
#2 : LATEX family
#3 : fontspec features
#4 : font name

Variant of the above in which the primitive TEX font command is stored in the vari-
able ⟨primitive font⟩. If a family is loaded (with bold and italic shapes) the primitive
font command will only select the regular face. This feature is designed for LATEX pro-
grammers who need to perform subsequent font-related tests on the ⟨primitive font⟩.

(End of definition for \fontspec_gset_fontface:NNnn and \fontspec_set_fontface:NNnn. These functions are
documented on page ??.)

5.3 Conditionals
The following functions in expl3 syntaxmay be used forwriting code that interfaceswith
fontspec-loaded fonts. The following conditionals are all provided in TF, T, and F forms.

5.3.1 Querying font families

\fontspec_font_if_exist:nTF Test whether the ‘font name’ (#1) exists or is loadable. The syntax of #1 is a re-
stricted/simplified version of fontspec’s usual font loading syntax; fonts to be loaded
by filename are detected by the presence of an appropriate extension (.otf, etc.), and
paths should be included inline. E.g.:

\fontspec_font_if_exist:nTF {cmr10}{T}{F}
\fontspec_font_if_exist:nTF {Times~ New~ Roman}{T}{F}
\fontspec_font_if_exist:nTF {texgyrepagella-regular.otf}{T}{F}
\fontspec_font_if_exist:nTF {/Users/will/Library/Fonts/CODE2000.TTF}{T}{F}

69

(End of definition for \fontspec_font_if_exist:nTF. This function is documented on page ??.)
The synonym \IfFontExistsTF is provided for ‘document authors’.

\fontspec_if_fontspec_font:TF Test whether the currently selected font has been loaded by fontspec.

(End of definition for \fontspec_if_fontspec_font:TF. This function is documented on page ??.)

\fontspec_if_opentype:TF Test whether the currently selected font is an OpenType font. Always true for LuaTEX
fonts.

(End of definition for \fontspec_if_opentype:TF. This function is documented on page ??.)

\fontspec_if_small_caps:TF Test whether the currently selected font has a ‘small caps’ face to be selected with
\scshape or similar. Note that testing whether the font has the Letters=SmallCaps font
feature is sufficient but not necessary for this command to return true, since small caps
can also be loaded from separate font files. The logic of this command is complicated by
the fact that fontspec will merge shapes together (for italic small caps, etc.).

(End of definition for \fontspec_if_small_caps:TF. This function is documented on page ??.)

5.3.2 Availability of features

\fontspec_if_aat_feature:nnTF Test whether the currently selected font contains the AAT feature (#1,#2).

(End of definition for \fontspec_if_aat_feature:nnTF. This function is documented on page ??.)

\fontspec_if_feature:nTF Test whether the currently selected font contains the raw OpenType feature #1. E.g.:
\fontspec_if_feature:nTF {pnum} {True} {False}. Returns false if the font is not
loaded by fontspec or is not an OpenType font.

(End of definition for \fontspec_if_feature:nTF. This function is documented on page ??.)

\fontspec_if_feature:nnnTF Test whether the currently selected font with raw OpenType script tag #1 and raw Open-
Type language tag #2 contains the rawOpenType feature tag #3. E.g.: \fontspec_if_feature:nnnTF {latn} {ROM} {pnum} {True} {False}.
Returns false if the font is not loaded by fontspec or is not an OpenType font.

(End of definition for \fontspec_if_feature:nnnTF. This function is documented on page ??.)

\fontspec_if_script:nTF Test whether the currently selected font contains the raw OpenType script #1. E.g.:
\fontspec_if_script:nTF {latn} {True} {False}. Returns false if the font is not
loaded by fontspec or is not an OpenType font.

(End of definition for \fontspec_if_script:nTF. This function is documented on page ??.)

\fontspec_if_language:nTF Test whether the currently selected font contains the raw OpenType language tag #1.
E.g.: \fontspec_if_language:nTF {ROM} {True} {False}. Returns false if the font is
not loaded by fontspec or is not an OpenType font.

(End of definition for \fontspec_if_language:nTF. This function is documented on page ??.)

\fontspec_if_language:nnTF Test whether the currently selected font contains the raw OpenType language tag #2 in
script #1. E.g.: \fontspec_if_language:nnTF {cyrl} {SRB} {True} {False}. Returns
false if the font is not loaded by fontspec or is not an OpenType font.

(End of definition for \fontspec_if_language:nnTF. This function is documented on page ??.)

70

5.3.3 Currently selected features

\fontspec_if_current_feature:nTF Test whether the currently loaded font is using the specified raw OpenType feature tag
#1. The tag string #1 should be prefixed with + to query an active feature, and with a -
(hyphen) to query a disabled feature.

(End of definition for \fontspec_if_current_feature:nTF. This function is documented on page ??.)

\fontspec_if_current_script:nTF Test whether the currently loaded font is using the specified raw OpenType script tag #1.

(End of definition for \fontspec_if_current_script:nTF. This function is documented on page ??.)

\fontspec_if_current_language:nTF Test whether the currently loaded font is using the specified rawOpenType language tag
#1.

(End of definition for \fontspec_if_current_language:nTF. This function is documented on page ??.)

71

	I Getting started
	1 History
	2 Introduction
	2.1 Acknowledgements

	3 Package loading and options
	3.1 Font encodings
	3.2 Maths fonts adjustments
	3.3 Configuration
	3.4 Warnings

	4 Interaction with LaTeX2ε and other packages
	4.1 Commands for old-style and lining numbers
	4.2 Italic small caps
	4.3 Emphasis and nested emphasis
	4.4 Strong emphasis

	II General font selection
	1 Main commands
	2 Font selection
	2.1 By font name
	2.2 By file name
	2.3 By custom file name using a .fontspec file
	2.4 Querying whether a font `exists'

	3 Commands to select font families
	4 Commands to select single font faces
	4.1 More control over font shape selection
	4.2 Specifically choosing the nfss family
	4.3 Choosing additional nfss font faces
	4.4 Math(s) fonts

	5 Miscellaneous font selecting details

	III Selecting font features
	1 Default settings
	2 Working with the currently selected features
	2.1 Priority of feature selection

	3 Different features for different font shapes
	4 Selecting fonts from TrueType Collections (TTC files)
	5 Different features for different font sizes
	6 Font independent options
	6.1 Colour
	6.2 Scale
	6.3 Interword space
	6.4 Post-punctuation space
	6.5 The hyphenation character
	6.6 Optical font sizes
	6.7 Font transformations
	6.8 Letter spacing

	7 Variable fonts
	7.1 Optical font sizes
	7.2 Weight
	7.3 Width
	7.4 Slant
	7.5 Other axes
	7.6 Instances

	IV OpenType
	1 Introduction
	1.1 How to select font features
	1.2 How do I know what font features are supported by my fonts?

	2 OpenType scripts and languages
	2.1 Script and Language examples

	3 OpenType font features
	3.1 Tag-based features
	3.2 CJK features

	V Commands for accents and symbols (`encodings')
	1 A new Unicode-based encoding from scratch
	2 Adjusting a pre-existing encoding
	3 Summary of commands

	VI LuaTeX-only font features
	1 Different font technologies and shapers
	2 Custom font features

	VII Fonts and features with XeTeX
	1 XeTeX-only font features
	1.1 Mapping
	1.2 Different font technologies: aat, OpenType, and Graphite
	1.3 Vertical typesetting

	2 The Graphite renderer
	3 macOS's aat fonts
	3.1 Ligatures
	3.2 Letters
	3.3 Numbers
	3.4 Contextuals
	3.5 Vertical position
	3.6 Fractions
	3.7 Variants
	3.8 Alternates
	3.9 Style
	3.10 CJK shape
	3.11 Character width
	3.12 Diacritics
	3.13 Annotation

	VIII Customisation and programming interface
	1 Defining new features
	2 Defining new scripts and languages
	3 Going behind fontspec's back
	4 Renaming existing features & options
	5 Programming interface
	5.1 Variables
	5.2 Functions for loading new fonts and families
	5.3 Conditionals

