Section 1 - Motif Functions and Macros

This page describes the format and contents of each reference page in Section 1,
which covers the Motif functions and macros.

Name
Function — a brief description of the function.
Synopsis
This section shows the signature of the function: the names and types of the argu-
ments, and the type of the return value. If header file other than <Xm/Xm.h> is
needed to declare the function, it is shown in this section as well.
Inputs
This subsection describes each of the function arguments that pass information to
the function.
Outputs
This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed with _return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.
Returns
This subsection explains the return value of the function, if any.
Availability
This section appears for functions that were added in Motif 2.0 and later, and also
for functions that are now superseded by other, preferred, functions.
Description
This section explains what the function does and describes its arguments and
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.
Usage

This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Motif Reference Manual 1

Motif Functions and Macros

Example
This section appears for some of the most commonly used Motif functions, and
provides an example of their use.

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, widget classes, and clients. The num-
bers in parentheses following each reference refer to the sections of this book in
which they are found.

2 Motif Reference Manual

Motif Functions and Macros XmActivateProtocol

Name
XmActivateProtocol — activate a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmActivateProtocol (Widget shell, Atom property, Atom protocol)

Inputs
shell - Specifies the widget associated with the protocol property.

property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.

Description
XmActivateProtocol() activates the specified protocol. If the shell is real-
ized, XmActivateProtocol() updates its protocol handlers and the specified
property. If the protocol is active, the protocol atom is stored in property; if the
protocol is inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmActivateProtocol() makes the shell able to respond to ClientMessage
events that contain the specified protocol. Before you can activate a protocol, the
protocol must be added to the shell with XmAddProtocols(). Protocols are
automatically activated when they are added. The inverse routine is XmDeacti -
vateProtocol().

See Also
XmActivateWMProtocol (1), XmAddProtocols(l) XmDeactivate-
Protocol (1), XmInternAtom(1), VendorShel 1(2).

Motif Reference Manual 3

XmActivateWMProtocol Motif Functions and Macros

Name
XmActivateWMProtocol — activate the XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmActivateWMProtocol (Widget shell, Atom protocol)
Inputs

shell - Specifies the widget associated with the protocol property.
protocol - Specifies the protocol atom.

Description
XmActivateWMProtocol () is a convenience routine that calls XmActi-
vateProtocol () with property set to XA_WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. Before you can activate the
protocols, they must be added to the shell with XmAddProtocols() or XmAd-
dWMProtocols(). Protocols are automatically activated when they are added.
The inverse routine is XmDeactivateWMProtocol ().

See Also
XmActivateProtocol(1), XmAddProtocols(1),
XmAddWMProtocols(1), XmDeactivateWMProtocol (1),
XmInternAtom(1), VendorShel 1(2).

4 Motif Reference Manual

Motif Functions and Macros XmAddProtocolCallback

Name

Synopsis

XmAddProtocolCallback — add client callbacks to a protocol.

#include <Xm/Protocols.h>

void XmAddProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs

shell - Specifies the widget associated with the protocol property.

property - Specifies the property that holds the protocol data.

protocol - Specifies the protocol atom.

callback - Specifies the procedure to invoke when the protocol message
is received.

closure - Specifies any client data that is passed to the callback.

Description

Usage

See Also

XmAddProtocolCallback() adds client callbacks to a protocol. The routine veri-
fies that the protocol is registered, and if it is not, it calls XmAddProtocols().
XmAddProtocolCallback() adds the callback to the internal list of callbacks, so
that it is called when the corresponding client message is received.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmAddProtocolCallback() allows you to
register these callback routines.

XmAddProtocols(1), XmAddWMProtocolCal Iback(l),
XmInternAtom(l), VendorShel 1(2).

Motif Reference Manual 5

XmAddProtocols Motif Functions and Macros

Name

Synopsis

XmAddProtocols — add protocols to the protocol manager.

#include <Xm/Protocols.h>

void XmAddProtocols (Widget shell, Atom property, Atom *protocols, Cardinal
num_protocols)

Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.

num_protocols Specifies the number of atoms in protocols.

Description

Usage

See Also

XmAddProtocols() registers a list of protocols to be stored in the specified
property of the specified shell widget. The routine adds the protocols to the pro-
tocol manager and allocates the internal tables that are needed for the protocol.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmAddProtocols() allows you to add protocols that can be understood by
your application. The inverse routine is XmRemoveProtocols(). To commu-
nicate using a protocol, a client sends a ClientMessage event containing a prop-
erty and protocol, and the receiving client responds by calling the associated
protocol callback routine. Use XmAddProtocolCal lback() to add a call-
back function to be executed when a client message event containing the speci-
fied protocol atom is received.

XmAddProtocolCal lback(1l), XmAddWMProtocols(1),
XmInternAtom(1), XmRemoveProtocols(l), VendorShel 1(2).

Motif Reference Manual

Motif Functions and Macros XmAddTabGroup

Name

Synopsis

XmAddTabGroup — add a widget to a list of tab groups.

void XmAddTabGroup (Widget tab_group)

Inputs

tab_group Specifies the widget to be added.

Availability

In Motif 1.1, XmAddTabGroup() is obsolete. It has been superseded by setting
XmNnavigationType to XmEXCLUSIVE_TAB_GROUP.

Description

Usage

See Also

Motif Reference Manual

XmAddTabGroup() makes the specified widget a separate tab group. This rou-
tine is retained for compatibility with Motif 1.0 and should not be used in newer
applications. If traversal behavior needs to be changed, this should be done
directly by setting the XmNnavigationType resource, which is defined by Man-
ager and Primitive.

A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing
the Tab or Shift-Tab keys. If the tab_group widget is a manager, its children are
all members of the tab group (unless they are made into separate tab groups). If
the widget is a primitive, it is its own tab group. Certain widgets must not be
included with other widgets within a tab group. For example, each List, Scroll-
bar, OptionMenu, or multi-line Text widget must be placed in a tab group by
itself, since these widgets define special behavior for the arrow or Tab keys,
which prevents the use of these keys for widget traversal. The inverse routine is
XmRemoveTabGroup().

XmGetTabGroup(1l), XmRemoveTabGroup(l),
XmManager(2), XmPrimitive(2).

XmAddToPostFromList Motif Functions and Macros

Name

XmAddToPostFromList — make a menu accessible from a widget.
Synopsis

#include <Xm/RowColumn.h>

void XmAddToPostFromList (Widget menu, Widget widget)

Inputs

menu Specifies a menu widget

widget Specifies the widget from which to make menu accessible
Availability

In Motif 2.0 and later, the function prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete.

Description
XmAddToPostFromList() is a convenience function which makes menu
accessible from widget. There is no limit to how many widgets may share the
same menu. The event sequence required to popup the menu is the same in each
widget context.

Usage
Rather than creating a new and identical hierarchy for each context in which a
pulldown or popup menu is required, a single menu can be created and shared. If
the type of the menu is XmMENU_PULLDOWN, the value of the XmNsubMen-
uld resource of widget is set to menu. If the type of the menu is
XmMENU_POPUP, button and key press event handlers are added to widget in
order to post the menu.

There are implicit assumptions that widget is a CascadeButton or CascadeBut-
tonGadget when menu is XmMENU_PULLDOWN, and that widget is not a
Gadget when menu is XmMENU_POPUP. These are not checked by the proce-
dure.

See Also
XmGetPostedFromWidget(l), XmRemoveFromPostFromList(l),
XmCascadeButton(2), XmCascadeButtonGadget(2), XmGadget(2),
XmPopupMenu(2), XmPul IldownMenu(2), XmRowCo lumn(2).

8 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocolCallback

Name
XmAddWMProtocolCallback — add client callbacks to an
XA_WM_PROTOCOLS protocol.
Synopsis
#include <Xm/Protocols.h>
void XmAddwWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)
Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
callback Specifies the procedure to invoke when the protocol message
is received.
closure Specifies any client data that is passed to the callback.
Description
XmAddWMProtocolCal Iback() is a convenience routine that calls XmAd-
dProtocolCal Iback() with property set to XA WM_PROTOCOL, the win-
dow manager protocol property.
Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmAddWMProtocolCal Iback() allows you to register these callback
routines with the window manager protocol property. The inverse routine is
XmRemoveWMProtocolCal Iback().
Example

The following code fragment shows the use of XmAddWMProtocolCall-
back() to save the state of an application using the WM_SAVE_YOURSELF
protocol:

Atom wm_save_yourselT;

wm_save_yourself = XInternAtom?! (XtDisplay
(toplevel),

1.From Motif 2.0, XmInternAtom() is marked for deprecation.

Motif Reference Manual 9

XmAddWMProtocolCallback Motif Functions and Macros

""WM_SAVE_YOURSELF""
, False);

XmAddWMProtocols (toplevel, &wm save yourself, 1);

XmAddWwMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocolCal lback(l), XmInternAtom(l),
XmRemoveWMProtocolCal lback(l), VendorShel 1(2).

10 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocols

Name
XmAddWMProtocols — add the XA_WM_PROTOCOLS protocols to the proto-
col manager.

Synopsis
#include <Xm/Protocols.h>

void XmAddWMProtocols (Widget shell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddWMProtocols() is a convenience routine that calls XmAddProtocols()
with property set to XA WM_PROTOCOL, the window manager protocol prop-
erty.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmAddWMProtocols()
allows you to add this protocol so that it can be understood by your application.
The inverse routine is XmRemoveWMProtocols(). To communicate using a
protocol, a client sends a ClientMessage event containing a property and proto-
col, and the receiving client responds by calling the associated protocol callback
routine. Use XmAddWMProtocolCal Iback() to add a callback function to
be executed when a client message event containing the specified protocol atom
is received.

Example

The following code fragment shows the use of XmAddWMProtocols() to add the
window manager protocols, so that the state of an application can be saved using the
WM_SAVE_YOURSELF protocol:

Atom wm_save yourself;

wm_save_yourself = XmInternAtom (XtDisplay
(toplevel),
""WM_SAVE_YOURSELF"
, False);

XmAddWMProtocols (toplevel, &wm_save yourself, 1);

Motif Reference Manual 11

XmAddWMProtocols Motif Functions and Macros

XmAddWwMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocols(1), XmAddWMProtocolCal Iback(1l)
XmInternAtom(1), XmRemoveWMProtocols(l), VendorShel 1(2).

12 Motif Reference Manual

Motif Functions and Macros XmCascadeButtonHighlight

Name

Synopsis

XmCascadeButtonHighlight, XmCascadeButtonGadgetHighlight — set the high-
light state of a CascadeButton.

#include <Xm/CascadeB.h>
void XmCascadeButtonHighlight (Widget cascadeButton, Boolean highlight)
#include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight (Widget cascadeButton, Boolean high-
light)

Inputs

cascadeButton Specifies the CascadeButton or CascadeButtonGadget.
highlight Specifies the highlight state.

Description

Usage

See Also

XmCascadeButtonHighl ight() sets the state of the shadow highlight
around the specified cascadeButton, which can be a CascadeButton or a Cas-
cadeButtonGadget.

XmCascadeButtonGadgetHighl ight() sets the highlight state of the
specified cascadeButton, which must be a CascadeButtonGadget.

Both routines draw the shadow if highlight is True and erase the shadow if high-
light is False.

CascadeButtons do not normally display a shadow like other buttons, so the high-
light shadow is often used to show that the button is armed. XmCascadeBut-
tonHighlight() and XmCascadeButtonGadgetHighlight() provide a
way for you to cause the shadow to be displayed.

XmCascadeButton(2), XmCascadeButtonGadget(2).

Motif Reference Manual 13

XmChangeColor Motif Functions and Macros

Name
XmChangeColor — update the colors for a widget.

Synopsis

void XmChangeColor (Widget widget, Pixel background)

Inputs
widget Specifies the widget whose colors are to be changed.

background Specifies the background color.

Description
XmChangeColor () changes all of the colors for the specified widget based on
the new background color. The routine recalculates the foreground color, the
select color, the arm color, the trough color, and the top and bottom shadow
colors and updates the corresponding resources for the widget.

Usage
XmChangeColor() is a convenience routine for changing all of the colors for a
widget, based on the background color. Without the routine, an application
would have to call XmGetColors() to get the new colors and then set the XmN-
foreground, XmNtopShadowColor, XmNbottomShadowColor, XmNtrough-
Color, XmNarmColor, XmNselectColor resources for the widget with
XtSetValues(). The XmNhighlightColor is set to the value of the XmNfore-
ground.

XmChangeColor() calls XmGetColors() internally to allocate the required
pixels. In Motif 1.2 and earlier, this uses the default color calculation procedure
unless a customized color calculation procedure has been set with XmSet-
ColorCalculation(). In Motif 2.0 and later, color calculation can be speci-
fied on a per-screen basis, and any specified XmNcolorCalculationProc
procedure of the XmScreen object associated with the widget is used in prefer-
ence.

See Also
XmGetColorCalculation(l), XmGetColors(l),
XmSetColorCalculation(l), XmScreen(2).

14 Motif Reference Manual

Motif Functions and Macros XmClipboardBeginCopy

Name
XmClipboardBeginCopy — set up storage for a clipboard copy operation.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardBeginCopy (Display *display,
Window window,
XmsString clip_label,
Widget widget,
VoidProc callback,
long *item_id)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
clip_label Specifies a label that is associated with the data item.
widget Specifies the widget that receives messages requesting data that
has been passed by name.
callback Specifies the callback function that is called when the clipboard
needs data that has been passed by name.
Outputs
item_id Returns the ID assigned to the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardBeginCopy() is a convenience routine that calls XmClip-
boardStartCopy() with identical arguments and with a timestamp of Cur-

rentTime.

Usage
XmClipboardBeginCopy() can be used to start a normal copy operation or a
copy-by-name operation. In order to pass data by name, the widget and callback
arguments to XmCl ipboardBeginCopy() must be specified.

Procedures

The VoidProc has the following format:

typedef void (*\VoidProc) (Widget widget, int *data_id, int *private_id, int
*reason)

Motif Reference Manual 15

XmClipboardBeginCopy Motif Functions and Macros

See Also

16

The VoidProc takes four arguments. The first argument, widget, is the widget
passed to the callback routine, which is the same widget as passed to XmClip-
boardBeginCopy(). The data_id argument is the ID of the data item that is
returned by XmCl ipboardCopy() and private_id is the private data passed to
XmClipboardCopy().

The reason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

XmClipboardCancelCopy(1), XmClipboardCopy(1),
XmClipboardCopyByName(1), XmCl ipboardEndCopy(1),
XmClipboardStartCopy(1).

Motif Reference Manual

Motif Functions and Macros XmClipboardCancelCopy

Name
XmClipboardCancelCopy — cancel a copy operation to the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCancelCopy (Display *display, Window window, long item_id)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.
Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCancelCopy() cancels the copy operation that is in progress
and frees temporary storage that has been allocated for the operation. The func-
tion returns ClipboardFail if XmCl ipboardStartCopy() has not been called
or if the data item has too many formats.

Usage
A call to XmClipboardCancelCopy() is valid only between calls to
XmClipboardStartCopy() and XmCl ipboardEndCopy(). XmClip-
boardCancelCopy/() can be called instead of XmCl ipboardEndCopy/()
when you need to terminate a copying operation before it completes. If you have
previously locked the clipboard, XmCl ipboardCancelCopy/() unlocks it, so
you should not call XmClipboardUnlock().

See Also
XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardEndCopy(1), XmClipboardStartCopy(1).

Motif Reference Manual 17

XmClipboardCopy Motif Functions and Macros

Name
XmClipboardCopy — copy a data item to temporary storage for later copying to
the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCopy (Display *display,
Window window,
long item_id,
char *format_name,
XtPointer buffer,
unsigned long length,
long private_id,
long *data_id)
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
item_id Specifies the ID of the data item.
format_name Specifies the name of the format of the data item.
buffer Specifies the buffer from which data is copied to the clip-
board.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.
Outputs
data_id Returns an ID for a data item that is passed by name.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.
Description

18

XmClipboardCopy() copies the data item specified by buffer to temporary
storage. The data item is moved to the clipboard data structure when XmClip-
boardEndCopy() is called. The item_id is the ID of the data item returned by
XmClipboardStartCopy() and format_name is a string that describes the
type of the data.

Motif Reference Manual

Motif Functions and Macros XmClipboardCopy

Usage

Example

Since the data item is not actually stored in the clipboard until XmClip-
boardEndCopy/() is called, multiple calls to XmClipboardCopy() add data item
formats to the same data item or will append data to an existing format. The func-
tion returns ClipboardFail if XmCl ipboardStartCopy/() has not been called
or if the data item has too many formats.

XmClipboardCopy() is called between calls to XmCl ipboardStart-
Copy() and XmCl i pboardEndCopy(). If you need to make multiple calls to
XmClipboardCopy() to copy a large amount of data, you should call
XmClipboardLock() to lock the clipboard for the duration of the copy opera-
tion.

When there is a large amount of clipboard data and the data is unlikely to be
retrieved, it can be copied to the clipboard by name. Since the data itself is not
copied to the clipboard until it is requested with a retrieval operation, copying by
name can improve performance. To pass data by name, call XmClipboard-
Copy() with buffer specified as NULL. A unique number is returned in data_id
that identifies the data item for later use. When another application requests data
that has been passed by name, a callback requesting the actual data will be sent to
the application that owns the data and the owner must then call XmCl i pboard-
CopyByName() to transfer the data to the clipboard. Once data that is passed by
name has been deleted from the clipboard, a callback notifies the owner that the
data is no longer needed.

The following callback shows the sequence of calls needed to copy data to the
clipboard:

void to_clipbd (Widget widget,
XtPointer client _data,

XtPointer call_data)

long item_id = 0;

int status;

XmString clip_label;

char buffer[32];

Display *dpy XtDisplayOfObject (widget);

Window window = XtWindowOfObject (widget);

Motif Reference Manual 19

XmClipboardCopy Motif Functions and Macros

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreateLocalized ('Data'™);
/* start a copy; retry until unlocked */

do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do {

status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,

(unsigned long) strlen
(buffer) + 1,

(fong) 0, (long *) 0);
} while (status == ClipboardLocked);
/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

}

See Also
XmClipboardBeginCopy(1), XmClipboardCancelCopy(1)
XmClipboardCopyByName(1), XmClipboardEndCopy(1)
XmClipboardStartCopy(1)

20 Motif Reference Manual

Motif Functions and Macros XmClipboardCopyByName

Name

Synopsis

XmClipboardCopyByName — copy a data item passed by name.

#include <Xm/CutPaste.h>

int XmClipboardCopyByName (Display *display,
Window window,
long data_id,
XtPointer buffer,
unsigned long length,
long private_id)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID number assigned to the data item by XmClip-
boardCopy().

buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.

Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description

Usage

XmClipboardCopyByName() copies the actual data to the clipboard for a data
item that has been previously passed by name. The data that is copied is specified
by buffer. The data_id is the ID assigned to the data item by XmCl ipboard-

Copy().

XmCl ipboardCopyByName() is typically used for incremental copying; new
data is appended to existing data with each call to XmClipboardCopyBy-
Name(). If you need to make multiple calls to XmCl i pboardCopyByName()
to copy a large amount of data, you should call XmCl ipboardLock() to lock
the clipboard for the duration of the copy operation.

Copying by name improves performance when there is a large amount of clip-
board data and when this data is likely never to be retrieved, since the data itself
is not copied to the clipboard until it is requested with a retrieval operation. Data
is passed by name when XmCl i pboardCopy() is called with a buffer value of
NULL. When a client requests the data passed by name, the callback registered

Motif Reference Manual 21

XmClipboardCopyByName Motif Functions and Macros

by XmClipboardStartCopy() is invoked. See XmCl ipboardStart-
Copy() for more information about the format of the callback. This callback calls
XmCl ipboardCopyByName() to copy the actual data to the clipboard.

Example
The following XmCutPasteProc callback shows the use of XmCl ipboard-
CopyByName() to copy data passed by name

void copy_by name (Widget widget,
long *data_id,
long *private_id;

int *reason)
{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];
iT (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff);
do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);
while (status !'= ClipboardSuccess);
}

See Also
XmClipboardBeginCopy(1), XmClipboardCopy(1)
XmClipboardEndCopy(1), XmClipboardStartCopy(1)

22 Motif Reference Manual

Motif Functions and Macros XmClipboardEndCopy

Name

XmClipboardEndCopy — end a copy operation to the clipboard.

Synopsis

#include <Xm/CutPaste.h>
int XmClipboardEndCopy (Display *display, Window window, long item_id)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description

Usage

Example

XmClipboardEndCopy() locks the clipboard, places data that has been accu-
mulated by calling XmC 1 i pboardCopy() into the clipboard data structure, and
then unlocks the clipboard. The item_id is the ID of the data item returned by
XmClipboardStartCopy(). The function returns ClipboardFail if XmClip-
boardStartCopy() has not been called previously.

XmClipboardEndCopy() frees temporary storage that was allocated by
XmClipboardStartCopy(). XmClipboardStartCopy() must be called
before XmClipboardEndCopy/(), which does not need to be called if
XmClipboardCancelCopy() has already been called.

The following callback shows the sequence of calls needed to copy data to the
clipboard:

static void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
long item_id = O;
int status;
XmString clip_label;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);

Window window = XtWindowOfObject (widget);

Motif Reference Manual 23

XmClipboardEndCopy Motif Functions and Macros

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreateLocalized (*'Data™);

/* start a copy; retry until unlocked */
do
status = XmClipboardStartCopy (dpy, window,
clip_label,
CurrentTime,
NULL, NULL,
&item_id);
while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do
status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,
(unsigned
long)strilen(buffer)+1,
0, NULL);
while (status == ClipboardLocked);

/* end the copy; retry until unlocked */
do
status = XmClipboardEndCopy (dpy, window,
item_id);
while (status == ClipboardLocked);
¥

See Also
XmClipboardBeginCopy(1), XmClipboardCancelCopy(1)
XmClipboardCopy(1), XmClipboardCopyByName(1),
XmClipboardStartCopy(1)

24 Motif Reference Manual

Motif Functions and Macros XmClipboardEndRetrieve

Name
XmClipboardEndRetrieve — end a copy operation from the clipboard
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardEndRetrieve (Display *display, Window window)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.
Description
XmClipboardEndRetrieve() ends the incremental copying of data from the clip-
board.
Usage
A call to XmClipboardEndRetrieve() is preceded by a call to XmClip-
boardStartRetrieve(), which begins the incremental copy, and calls to
XmClipboardRetrieve(), which incrementally retrieve the data items from
clipboard storage. XmCl i pboardStartRetrieve() locks the clipboard and
it remains locked until XmCl ipboardEndRetrieve() is called.
Example

The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
do

status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);
while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,

Motif Reference Manual 25

XmClipboardEndRetrieve Motif Functions and Macros

"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardRetrieve(l), XmClipboardStartRetrieve(l)

26 Motif Reference Manual

Motif Functions and Macros XmClipboardInquireCount

Name
XmClipboardinquireCount — get the number of data item formats available on
the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardInquireCount (Display *display,
Window window,
int *count,
unsigned long *max_length)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Outputs
count Returns the number of data item formats available for the data on
the clipboard.
max_length Returns the maximum length of data item format names.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireCount() returns the number of data formats available
for the current clipboard data item and the length of its longest format name. The
count includes the formats that were passed by name. If there are no formats
available, count is O (zero).

Usage
To inquire about the formats of the data on the clipboard, you use XmCl ip-
boardlInquireCount() and XmCl ipboardInquireFormat() in con-
junction. XmCl ipboardInquireCount() returns the number of formats for
the data item and XmCl ipboardInquireFormat() allows you to iterate
through all of the formats.

See Also
XmClipboardInquireFormat(l).

Motif Reference Manual 27

XmClipboardInquireFormat Motif Functions and Macros

Name
XmClipboardinquireFormat — get the specified clipboard data format name.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardinquireFormat (Display *display,
Window window,
int index,
XtPointer format_name_buf,
unsigned long buffer_len,
unsigned long *copied_len)
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
index Specifies the index of the format name to retrieve.
buffer_len Specifies the length of format_name_buf in bytes.

Outputs
format_name_buf Returns the format name.

copied_len Returns the length (in bytes) of the string copied to
format_name_buf.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if format_name_buf is not long enough
to hold the returned data, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireFormat() returns a format name for the current data
item in the clipboard. The format name returned is specified by index, where 1
refers to the first format. If index exceeds the number of formats for the data
item, then XmCl ipboardInqui reFormat() returns a value of 0 (zero) in the
copied_len argument. XmCl ipboardlnquireFormat() returns the format
name in the format_name_buf argument. This argument is a buffer of a fixed
length that is allocated by the programmer. If the buffer is not large enough to
hold the format name, the routine copies as much of the format name as will fit in
the buffer and returns ClipboardTruncate.

28 Motif Reference Manual

Motif Functions and Macros XmClipboardInquireFormat

Usage
To inquire about the formats of the data on the clipboard, you use XmCl ip-
boardlInquireCount() and XmCl ipboardInquireFormat() in con-
junction. XmCl ipboardInquireCount() returns the number of formats for
the data item and XmCl ipboardInquireFormat() allows you to iterate
through all of the formats.

See Also

XmClipboardInquireCount(l).

Motif Reference Manual 29

XmClipboardinquireLength Motif Functions and Macros

Name

Synopsis

XmClipboardinquireLength — get the length of the data item on the clipboard.

#include <Xm/CutPaste.h>

int XmClipboardinquireLength (Display *display,
Window window,
char *format_name,
unsigned long *length)

Inputs

display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().

window Specifies a window ID that identifies the client to the clip-
board.

format_name Specifies the format name for the data.

Outputs

length Returns the length of the data item for the specified format.

Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard for
the requested format.

Description

Usage

Example

30

XmClipboardInquireLength() returns the length of the data stored under
the specified format_name for the current clipboard data item. If no data is found
corresponding to format_name or if there is no item on the clipboard, XmCl ip-
boardInquireLength() returns a length of 0 (zero). When a data item is
passed by name, the length of the data is assumed to be passed in a call to
XmClipboardCopy(), even though the data has not yet been transferred to the
clipboard.

XmClipboardInquireLength() provides a way for an application to find
out how much data is on the clipboard, so that it can allocate a buffer that is large
enough to retrieve the data with one call to XmCl i pboardRetrieve().

The following code fragment demonstrates how to use XmClipboardIn-
quireLength() to retrieve all of the data on the clipboard:

int status;
unsigned long recvd, length;

Motif Reference Manual

Motif Functions and Macros XmClipboardInquireLength

char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
do
status = XmClipboardInquireLength (dpy, window,
"STRING",
&length);

while (status == ClipboardLocked);

if (length 1= 0) {
data = XtMalloc ((unsigned) (length+l) * sizeof

(char));
do
status = XmClipboardRetrieve (dpy, window,
"STRING",
(XtPointer)
data,
(unsigned long)
length+1,
&recvd, (long *)
0);
while (status == ClipboardLocked);
if (status !'= ClipboardSuccess || recvd !=
length) {
XtWarning (“Failed to receive all clipboard
data'™);
¥

}

See Also
XmClipboardRetrieve(l)

Motif Reference Manual 31

XmClipboardInquirePendingltems Motif Functions and Macros

Name

Synopsis

XmClipboardinquirePendingltems — get a list of pending data ID/private 1D
pairs.

#include <Xm/CutPaste.h>

int XmClipboardinquirePendingltems (Display *display,
Window window,
char

*format_name,
XmClipboardPendingList *item_list,
unsigned long *count)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.

Outputs

item_list Returns an array of data_id/private_id pairs for the specified for-
mat.
count Returns the number of items in the item_list array.

Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description

Usage

32

XmClipboardInquirePendingltems() returns for the specified
format_name a list of pending data items, represented by data_id/private_id
pairs. The data_id and private_id arguments are specified in the clipboard func-
tions for copying and retrieving. A data item is considered pending under these
conditions: the application that owns the data item originally passed it by name,
the application has not yet copied the data, and the data item has not been deleted
from the clipboard. If there are no pending items for the specified format_name,
the routine returns a count of 0 (zero). The application is responsible for freeing
the memory that is allocated by XmClipboardInquirePendingltems() to
store the list. Use XtFree() to free the memory.

An application should call XmClipboardinquirePendingltems() before exiting, to
determine whether data that has been passed by name should be copied to the
clipboard.

Motif Reference Manual

Motif Functions and Macros XmClipboardinquirePendingltems

Structures
The XmClipboardPendingList is defined as follows:

typedef struct {
long Datald;
long Privateld;
} XmClipboardPendingRec, *XmClipboardPendingList;

See Also
XmClipboardStartCopy(1).

Motif Reference Manual

33

XmClipboardLock Motif Functions and Macros

Name
XmClipboardLock — lock the clipboard.
Synopsis
#include <Xm/CutPaste.h>

int XmClipboardLock (Display *display, Window window)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by

another application.

Description
XmClipboardLock() locks the clipboard on behalf of an application, which
prevents access to the clipboard by other applications. If the clipboard has
already been locked by another application, the routine returns ClipboardLocked.
If the same application has already locked the clipboard, the lock level is
increased.

Usage
An application uses XmCl i pboardLock() to ensure that clipboard data is not
changed by calls to clipboard functions by other applications. An application
does not need to lock the clipboard between calls to XmCl ipboardStar-
tRetrieve() and XmClipboardEndRetrieve(), because the clipboard is
locked automatically between these calls. XmCl ipboardUnlock() allows
other applications to access the clipboard again.

See Also
XmClipboardEndCopy(1), XmClipboardEndRetrieve(l),
XmClipboardStartCopy(1), XmClipboardStartRetrieve(l),
XmClipboarduUnlock(1).

34 Motif Reference Manual

Motif Functions and Macros XmClipboardRegisterFormat

Name

Synopsis

XmClipboardRegisterFormat — register a new format for clipboard data items.

#include <Xm/CutPaste.h>

int XmClipboardRegisterFormat (Display *display, char *format_name, int
format_length)

Inputs

display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().

format_name Specifies the string name for the format.

format_length Specifies the length of the format in bits (0, 8, 16, or 32).

Returns

ClipboardSuccess on success, ClipboardBadFormat if the format is not properly
specified, ClipboardLocked if the clipboard is locked by another application, or
ClipboardFail on failure.

Description

Usage

See Also

XmClipboardRegisterFormat() registers a new format having the speci-
fied format_name and format_length. XmCl ipboardRegisterFormat()
returns ClipboardFail if the format is already registered with the specified length
or ClipboardBadFormat if format_name is NULL or format_length is not 0, 8,
16, or 32 bits.

XmClipboardRegisterFormat() is used by applications that support cut-
ting and pasting of arbitrary data types. Every format that is stored on the clip-
board needs to have a length associated with it, so that clipboard operations
between applications that run on platforms with different byte-swapping orders
function properly. Format types that are defined by the ICCCM are preregistered.
If format_length is 0, XmCl ipboardRegisterFormat() searches through
the preregistered format types, and returns ClipboardSuccess if format_name is
found, ClipboardFail otherwise.

If you are registering your own data structure as a format, you should choose an
appropriate name, and use 32 as the format size.

XmClipboardStartCopy(1).

Motif Reference Manual 35

XmClipboardRetrieve Motif Functions and Macros

Name

Synopsis

XmClipboardRetrieve — retrieve a data item from the clipboard.

#include <Xm/CutPaste.h>

int XmClipboardRetrieve (Display *display,
Window window,
char *format_name,
XtPointer buffer,
unsigned long length,
unsigned long *num_bytes,
long *private_id)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.

buffer Specifies the buffer to which the clipboard data is copied.

length Specifies the length of buffer.

Outputs

num_bytes Returns the number of bytes of data copied into buffer.
private_id Returns the private data that was stored with the data item.

Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if buffer is not long enough to hold the
returned data, or ClipboardNoData if there is no data on the clipboard for the
requested format.

Description

Usage

36

XmClipboardRetrieve() fetches the current data item from the clipboard
and copies it to the specified buffer. The format_name specifies the type of data
being retrieved. The num_bytes parameter returns the amount of data that is cop-
ied into buffer. The routine returns ClipboardTruncate when all of the data does
not fit in the buffer, to indicate that more data remains to be copied.

XmClipboardRetrieve() can be used to retrieve data in one large piece or in
multiple smaller pieces. To retrieve data in one chunk, call XmClipboardin-
quireLength() to determine the size of the data on the clipboard. Multiple

calls to XmCl i pboardRetrieve() with the same format_name, between calls
to XmClipboardStartRetrieve() and XmCl ipboardEndRetrieve(),

Motif Reference Manual

Motif Functions and Macros XmClipboardRetrieve

Example

See Also

copy data incrementally. Since the clipboard is locked by a call to XmClip-

boardStartRetrieve(), it is suggested that your application call any clip-

board inquiry routines between this call and the first call to
XmClipboardRetrieve()l.

The following code fragment shows the sequence of calls needed to perform an

incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
do

status = XmClipboardStartRetrieve (dpy, window,

CurrentTime);
while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",

(XtPointer) buffer,

(unsigned long)
sizeof (buffer),
&received,

(long *) 0);
} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

XmClipboardEndRetrieve(l), XmClipboardinquireLength(l)

XmClipboardLock(l), XmClipboardStartRetrieve(l),
XmClipboarduUnlock(l)

1.Erroneously given as ClipboardRetrieve() in 1st and 2nd editions.

Motif Reference Manual

37

XmClipboardStartCopy Motif Functions and Macros

Name
XmClipboardStartCopy — set up storage for a clipboard copy operation.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardStartCopy (Display *display,
Window window,
XmString clip_label,
Time timestamp,
Widget widget,
XmCutPasteProc callback,
long *item_id)
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
clip_label Specifies a label that is associated with the data item.
timestamp Specifies the time of the event that triggered the copy opera-
tion.
widget Specifies the widget that receives messages requesting data
that has been passed by name.
callback Specifies the callback function that is called when the clip-
board needs data that has been passed by name.
Outputs
item_id Returns the ID assigned to the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardStartCopy() creates the storage and data structures that
receive clipboard data. During a cut or copy operation, an application calls this
function to initiate the operation. The data that is copied to the structures
becomes the next clipboard data item.

Several arguments to XmCl i pboardStartCopy() provide identifying infor-
mation. The window argument specifies the window that identifies the applica-
tion to the clipboard; an application should pass the same window ID to each
clipboard routine that it calls. clip_label assigns a text string to the data item that
could be used as the label for a clipboard viewing window. The timestamp passed

38 Motif Reference Manual

Motif Functions and Macros XmClipboardStartCopy

to the routine must be a valid timestamp. The item_id argument returns a number
that identifies the data item. An application uses this number to specify the data
item in other clipboard calls.

Usage
Since copying a large piece of data to the clipboard can take a long time and it is
possible that the data will never be requested by another application, the clip-
board copy routines provide a mechanism to copy data by name. When a clip-
board data item is passed by name, the application does not need to copy the data
to the clipboard until it has been requested by another application. In order to
pass data by name, the widget and callback arguments to XmCl i pboard-
StartCopy() must be specified. widget specifies the ID of the widget that
receives messages requesting that data be passed by name. All of the message
handling is done by the clipboard operations, so any valid widget ID can be used.
callback specifies the procedure that is invoked when the clipboard needs the
data that was passed by name and when the data item is removed from the clip-
board. The callback function copies the actual data to the clipboard using
XmClipboardCopyByName().

Example
The following routines show the sequence of calls needed to copy data by name.
The to_clipbd callback shows the copying of data and copy_by name shows the
callback that actually copies the data:

void copy_by name (Widget widget,
long *data_id,
long *private_id,
int *reason)

Display *dpy XtDisplay (toplevel);

Window window = XtWindow (toplevel);
int status;
char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff'");

do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

Motif Reference Manual 39

XmClipboardStartCopy Motif Functions and Macros

while (status !'= ClipboardSuccess);

}
}

void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

unsigned long item_id = O;

int status;

XmString clip_label;

Display *dpy = XtDisplayOfObject
(widget);

Window window = XtWindowOfObject
(widget);

unsigned long size = DATA_SIZE;

char *data = (char *) client_data;

clip_label = XmStringCreateLocalized (“'Data™);

/* start a copy; retry until unlocked */
do
status = XmClipboardStartCopy (dpy, window,
clip_label,
CurrentTime,
widget,
copy_by name,
&item_id);
while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do
status = XmClipboardCopy (dpy, window,
item_id,
"STRING'", NULL,
size, 0, NULL);
while (status == ClipboardLocked);

/* end the copy; retry until unlocked */

do
status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

40 Motif Reference Manual

Motif Functions and Macros XmClipboardStartCopy

Procedures

See Also

The XmCutPasteProc has the following format:

typedef void (*XmCutPasteProc) (Widget widget, long *data_id, long
*private_id, int *reason)

An XmCutPasteProc takes four arguments. The first argument, widget, is the
widget passed to the callback routine, which is the same widget as passed to
XmClipboardBeginCopy(). The data_id argument is the ID of the data item
that is returned by XmCl i pboardCopy() and private_id is the private data
passed to XmCl ipboardCopy().

The reason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

XmClipboardBeginCopy(1), XmClipboardCancelCopy(1),
XmClipboardCopy (1), XmCl ipboardCopyByName(1),
XmClipboardEndCopy(1), XmClipboardLock(1),
XmClipboardRegisterFormat(l), XmClipboardUndoCopy(1),
XmClipboardUnlock(l), XmClipboardWithdrawFormat(1).

Motif Reference Manual 41

XmClipboardStartRetrieve Motif Functions and Macros

Name

Synopsis

XmClipboardStartRetrieve — start a clipboard retrieval operation.

#include <Xm/CutPaste.h>

int XmClipboardStartRetrieve (Display *display, Window window, Time times-
tamp)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
timestamp Specifies the time of the event that triggered the retrieval opera-
tion.

Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description

Usage

Example

42

XmClipboardStartRetrieve() starts a clipboard retrieval operation by
telling the clipboard that an application is ready to start copying data from the
clipboard. XmCl ipboardStartRetrieve() locks the clipboard until
XmClipboardEndRetrieve() is called. The window argument specifies the
window that identifies the application to the clipboard; an application should pass
the same window ID to each clipboard routine that it calls. The timestamp passed
to the routine must be a valid timestamp.

Multiple calls to XmCl i pboardRetrieve() with the same format_name,
between calls to XmCl ipboardStartRetrieve() and XmClipboardEn-
dRetrieve(), copy data incrementally.

The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
do

Motif Reference Manual

Motif Functions and Macros XmClipboardStartRetrieve

status = XmClipboardStartRetrieve (dpy, window,

CurrentTime);
while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,

"STRING",
(XtPointer) buffer,

(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardEndRetrieve(l), XmClipboardInquireCount(l)
XmClipboardinquireFormat(l), XmClipboardlnquireLength(l)
XmClipboardinquirePendingltems(1), XmClipboardLock(1)
XmClipboardRetrieve(l), XmClipboardunlock(1)

Motif Reference Manual 43

XmClipboardUndoCopy Motif Functions and Macros

Name
XmClipboardUndoCopy — remove the last item copied to the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardUndoCopy (Display *display, Window window)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardundoCopy() deletes the item most recently placed on the clip-
board, provided that the application that originally placed the item has matching
values for display and window. If the values do not match, no action is taken. The
routine also restores any data item that was deleted from the clipboard by the call
to XmClipboardCopy().

Usage
Motif maintains a two-deep stack of items that have been placed on the clip-
board. Once an item has been copied to the clipboard, the copy can be undone by
calling XmClipboardUndoCopy(). Calling this routine twice undoes the last
undo operation.

See Also

XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardCopyByName(1), XmCl ipboardEndCopy(1),
XmClipboardStartCopy(1).

44 Motif Reference Manual

Motif Functions and Macros XmClipboardUnlock

Name
XmClipboardUnlock — unlock the clipboard.

Synopsis
#include <Xm/CutPaste.h>
int XmClipboardUnlock (Display *display, Window window, Boolean
remove_all_locks)

Inputs
display Specifies a connection to an X server; returned from
XOpenDisplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
remove_all_locks Specifies whether nested locks should be removed.
Returns

ClipboardSuccess on success or ClipboardFail if the clipboard is not locked or if
it is locked by another application.

Description
XmClipboardunlock() unlocks the clipboard, which allows other applica-
tions to access it. If remove_all_locks is True, all nested locks are removed. If it
is False, only one level of lock is removed.

