It parses a fitted 'R' model object, and returns a formula in
'Tidy Eval' code that calculates the predictions. It works with
several databases back-ends because it leverages 'dplyr' and 'dbplyr'
for the final 'SQL' translation of the algorithm. It currently
supports lm(), glm(), randomForest(), ranger(), earth(),
xgb.Booster.complete(), cubist(), and ctree() models.
Version: |
0.5.1 |
Depends: |
R (≥ 3.6) |
Imports: |
cli, dplyr (≥ 0.7), generics, knitr, purrr, rlang (≥ 1.1.1), tibble, tidyr |
Suggests: |
covr, Cubist, DBI, dbplyr, earth (≥ 5.1.2), methods, mlbench, modeldata, nycflights13, parsnip, partykit, randomForest, ranger, rmarkdown, RSQLite, testthat (≥ 3.2.0), xgboost, yaml |
Published: |
2024-12-19 |
DOI: |
10.32614/CRAN.package.tidypredict |
Author: |
Emil Hvitfeldt [aut, cre],
Edgar Ruiz [aut],
Max Kuhn [aut] |
Maintainer: |
Emil Hvitfeldt <emil.hvitfeldt at posit.co> |
BugReports: |
https://github.com/tidymodels/tidypredict/issues |
License: |
MIT + file LICENSE |
URL: |
https://tidypredict.tidymodels.org,
https://github.com/tidymodels/tidypredict |
NeedsCompilation: |
no |
Materials: |
README NEWS |
In views: |
ModelDeployment |
CRAN checks: |
tidypredict results |