
Package ‘epicmodel’
December 11, 2024

Title Causal Modeling in Epidemiology

Version 0.2.0

Description Create causal models for use in epidemiological studies,
including sufficient-component cause models as introduced by
Rothman (1976) <doi:10.1093/oxfordjournals.aje.a112335>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Imports checkmate, cli, dagitty, DiagrammeR, dplyr, DT, ggplot2,
gtools, methods, prompter, purrr, rlang, shiny, shinyalert,
shinyjs, shinythemes, spsUtil, stringr, tibble, tidyr

Suggests ggdag, ggforce, ggraph, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 3.5.0), magrittr

LazyData true

VignetteBuilder knitr

URL https://forsterepi.github.io/epicmodel/,

https://github.com/forsterepi/epicmodel

BugReports https://github.com/forsterepi/epicmodel/issues

NeedsCompilation no

Author Felix Forster [aut, cre, cph] (<https://orcid.org/0000-0002-3670-9244>)

Maintainer Felix Forster <felix.forster@med.uni-muenchen.de>

Repository CRAN

Date/Publication 2024-12-11 19:10:01 UTC

1

https://doi.org/10.1093/oxfordjournals.aje.a112335
https://forsterepi.github.io/epicmodel/
https://github.com/forsterepi/epicmodel
https://github.com/forsterepi/epicmodel/issues
https://orcid.org/0000-0002-3670-9244

2 are_sufficient

Contents

are_sufficient . 2
check_steplist . 3
create_scc . 5
effect_size . 7
export_mechanism . 9
intervene . 10
launch_steplist_creator . 12
mechanism . 13
necessary_causes . 16
new_scc . 17
new_steplist . 22
plot_dag . 26
prevent . 29
remove_all_modules . 30
remove_na . 31
remove_segment . 31
scc_cause_sets . 32
scc_rain . 33
scc_to_dag . 33
sc_contain_steps . 34
show_steps . 35
steplist_party . 36
steplist_rain . 36
uncheck_steplist . 37

Index 38

are_sufficient Check if a certain set of component causes is suffcient

Description

Provide a SCC model and a set of component causes and evaluate if the provided set of causes
fulfills any sufficient cause, i.e., is sufficient for the outcome to occur based on the provided SCC
model. Fulfilling a sufficient cause means that all component causes of a certain sufficient cause are
in the provided set of causes. Unknown causes are ignored by this function.

Usage

are_sufficient(scc, causes = NULL, type = c("status", "binary"))

check_steplist 3

Arguments

scc An object of class epicmodel_scc.

causes NULL (default) or a character vector containing IDs of a set of component
causes. If NULL, prints a list of all available component causes.

type Either "status" (default) or "binary". If "status", returns one of "always", "de-
pends", "never". If "binary", returns TRUE or FALSE.

Details

Depending on the value of type, the following values are possible:

• type = "status": If the provided set of causes contains all component causes of a suffi-
cient cause with status "always", returns "always". If the provided set of causes only fulfills
sufficient cause with status "depends" or "depends (potential order implausibilities)", returns
"depends". If no sufficient causes are fulfilled, returns "never".

• type = "binary": If the returned status would have been "always" or "depends", TRUE is
returned. If the returned status would have been "never", returns FALSE.

Value

For type = "binary, returns TRUE if all component causes for at least one sufficient cause are in
causes and FALSE otherwise. For type = status, returns "always" if at least one sufficient cause
with sufficiency status "always" is fulfilled. If not, returns "depends" if at least one sufficient cause
with sufficiency status "depends" or "depends (potential order implausibilities)" is fulfilled. If no
sufficient cause is fulfilled, returns "never".

Examples

Create some SCC model
steplist_checked <- check_steplist(steplist_rain)
scc_model <- create_scc(steplist_checked)

Check sufficiency for a certain set of component causes
are_sufficient(scc_model, c("THENa1","THENa5"), type = "status")
are_sufficient(scc_model, c("THENa1","THENa5"), type = "binary")

check_steplist Check epicmodel_steplist class objects

Description

Check if epicmodel_steplist class objects fulfill the conditions for being inputed in create_scc().

Usage

check_steplist(steplist)

4 check_steplist

Arguments

steplist An object of class epicmodel_steplist.

Details

The following checks are conducted:

Errors:
• Correct ID format in WHAT segments
• No duplicated IDs in WHAT segments
• Correct ID format in DOES segments
• No duplicated IDs in DOES segments
• Correct ID format in WHERE segments
• No duplicated IDs in WHERE segments
• Correct ID format in Modules
• No duplicated IDs in Modules
• Correct ID format in ICC
• No duplicated IDs in ICC
• All WHAT segments used in data.frame step must be listed in data.frame what

• All DOES segments used in data.frame step must be listed in data.frame does

• All WHERE segments used in data.frame step must be listed in data.frame where

• All modules used in data.frame step must be listed in data.frame modules

• Either all steps or no steps have modules specified in data.frame step

• All step IDs used in ICC definition must be specified in data.frame step

• Starting steps, i.e., steps without IF condition, must not have end_step == 1 in data.frame
step

• A steplist must contain component causes
• In case there are two steps with identical THEN statements, they cannot have both end_step
== 1 and end_step == 0 in data.frame step

• THEN statements used in IF/IFNOT conditions must be available for chaining, i.e., there
must be a step with this statement as its THEN part and this step must not be defined as end
step

• For all steps, their THEN statement must be available in data.frame then

• A step must not have identical IF and IFNOT conditions
• A step’s THEN statement must not be part of its own IF/IFNOT condition
• All steps used in the outcome definition must be in data.frame step with end_step == 1

Warnings:
• No duplicated keywords in WHAT segments
• No duplicated keywords in DOES segments
• No duplicated keywords in WHERE segments
• No duplicated keywords in Modules
• All WHAT segments in data.frame what should be used in data.frame step

• All DOES segments in data.frame does should be used in data.frame step

create_scc 5

• All WHERE segments in data.frame where should be used in data.frame step

• All modules in data.frame modules should be used in data.frame step

• All steps should have references
• There should not be any steps with identical THEN statements
• All steps with end_step == 1in data.frame step should be used in the outcome definition
• Outcome definitions should not be contained in each other, e.g., for outcome definition
(A and B) or (A and B and C), A and B is contained, i.e., a subset of, A and B and C,
which makes A and B and C redundant

Value

Prints information about successful and unsuccessful checks in the console. Returns the input
steplist. If checks were successful, returns a steplist of class epicmodel_steplist_checked that
can be used in building SCC models.

Examples

steplist_checked <- check_steplist(steplist_rain)

create_scc Creating SCC models

Description

Creates a sufficient-components cause (SCC) model from a steplist, which is a list of IF/THEN
statements describing the causal mechanism behind an outcome of interest. The steplist needs to
meet certain structural requirements. Therefore, for steplist creation, use the Steplist Creator shiny
app launched by launch_steplist_creator().

Usage

create_scc(steplist)

Arguments

steplist An object of class epicmodel_steplist_checked.

Details

The following algorithm is used to create a sufficient-component cause (SCC) model from a steplist.

• Check inputs: The steplist needs to be checked by check_steplist() before input

• Are modules used: Evaluate if the steplist contains modules

• Process steplist: Process steplist and outcome definition so that they can be used by the pro-
cedure

6 create_scc

• Get all combinations of component causes in the steplist: Component causes are steps, which
themselves have no IF condition but appear in IF conditions of other steps (and maybe ad-
ditionally in IFNOT conditions). Interventions are not considered to be component causes.
Interventions are as well steps without IF condition, but they only appear in IFNOT condi-
tions of other steps. Invalid combinations of component causes as specified in the ICC part of
the steplist are excluded, as well as every component cause being absent.

• Check sufficiency: Sufficiency is checked for every combination of component causes. First,
based on a specific set of component causes, it is derived, which steps can be caused by this
set, i.e., which IF conditions are fulfilled. For this, a current set of included steps is defined,
which in the beginning includes only the corresponding set of component causes. Then, it
is iteratively checked, for which other steps with IF condition (i.e., excluding non-selected
component causes and interventions) this IF condition is fulfilled. These steps are added to the
current set of included steps and the process is repeated until for no new steps the IF condition
is fulfilled. Second, this final list of steps is compared against the outcome definitions. If it is
fulfilled, the set of component causes is sufficient.

• Check IFNOT conditions: Please note that IFNOT conditions were ignored up to this point.
Now, all sets of component causes that were found to be sufficient previously, are re-checked
for IFNOT conditions. First, it is checked if there are any IFNOT conditions in the final list
of steps derived above and if those are fulfilled based only on the other steps in this list. If
no, checking is complete and the corresponding set of component causes is always sufficient.
If yes, further checking is required. In these cases, sufficiency depends on the order in which
individual steps occur. In principle, a step with both IF and IFNOT conditions fulfilled, occurs
if the IF condition is fulfilled before the IFNOT condition, similar to how I do not care if a
door is closed if I already went through it when it was still open. Please note that this approach
extends SCC models by an additional time component. Sufficiency is therefore re-checked for
all possible sequences of IF and IFNOT conditions of all steps that include IFNOT conditions
that can be fulfilled by the final set of steps. It is possible to have component causes with
IFNOT conditions. Since they do not have an IF condition, the THEN statement is used
instead. For every sequence, it is evaluated if the IF (or THEN for component causes) occurs
before or after the IFNOT. If IF/THEN occur after the corresponding IFNOT, this step is
removed from the final list of steps. Sufficieny is now re-checked based on the updated list. If
some orderings do not fulfill the outcome definition, the sufficiency status of the corresponding
set of component causes is changed to "depends", as it depends on the sequence of events.
Please note that currently, all sequences are checked even though some of them might be
implausible, e.g., when two steps with IFNOT conditions are chained together. In this case,
there will be a warning displayed, but the user ultimately needs to check plausibility of the
sequence of events.

• Minimize: Sufficient causes must be minimal by definition, i.e., every component cause must
be necessary within its sufficient cause, i.e., the absence of one component cause of a sufficient
set means that the outcome does not occur anymore. Therefore, the list of sufficient (both
always and depends) sets of component causes is reduced to minimal ones.

• Add unknown causes: It is possible/likely that unknown causes, both component causes and
sufficient causes, are not part of the model yet. Therefore, every sufficient cause gets an
additional individual (i.e., a different one for each sufficient cause) unknown component cause
representing additional unknown components, and one unknown sufficient cause is added to
the model consisting of a single unknown component cause and representing all unknown
sufficient causes. If relevant, the user can decide in functions with the SCC model as input if
unknown causes should be included or not.

effect_size 7

• Output preparation: Combines all outputs to an object of class epicmodel_scc for further
analysis.

Value

An object of class epicmodel_scc. If no sufficient causes are found, no object is returned but
instead a corresponding message is displayed in the console.

References

Rothman KJ (1976): Causes. American Journal of Epidemiology 104 (6): 587–592.

See Also

• SCC models for information on epicmodel_scc objects

• Steplist for information on epicmodel_steplist objects

Examples

First, create a steplist in the shiny app
Launch the app with launch_steplist_creator()
Then load your steplist using readRDS()
In this example we use the built-in steplist_rain

Check the steplist before running create_scc()
steplist_checked <- check_steplist(steplist_rain)

Use the checked steplist in create_scc()
scc_model <- create_scc(steplist_checked)

effect_size Determine standardized effect size of component causes

Description

SCC models teach us that effect strength, e.g., a risk ratio, is no natural constant but depends on
the prevalence of component causes and, therefore, differs between populations. However, even
without any population, this function derives effect sizes for every component cause by comparing
how many sets of component causes with and without a certain cause are sufficient to cause the
outcome of interest.

Usage

effect_size(scc, depends = TRUE, output = c("nice", "table"))

8 effect_size

Arguments

scc An object of class epicmodel_scc.

depends TRUE (default) or FALSE. If FALSE, only includes sufficient causes with suff-
ciency status "always".

output A single element of type character, either "nice" (default) or "table". If "table",
returns a data.frame. If "nice", a nicely formated output is printed in the console.

Details

The following algorithm is used to derive effect sizes from SCC models:

• The effect size is derived for one specific component cause. The following steps are repeated
for all of them.

• Get all potential combinations of component causes

• Remove combinations that contain incompatible component causes (ICC), as specified in the
steplist

• Split the set of possible combinations of component causes into two parts: Sets, in which
the component cause of interest is present & sets, in which the component cause of interest
is absent. The numbers are recorded and returned in the output table (output = "table") as
variables num_combos_true (cause is present) and num_combos_false (cause is absent). If
there are no incompatible component causes (ICC), both values should be the same.

• Check for all possible combinations of component causes, if they are sufficient for the outcome
to occur. The number of sufficient combinations are counted separately for combinations
with the component cause of interest present and combinations with the component cause of
interest absent. The numbers are recorded and returned in the output table (output = "table")
as variables suff_true (cause is present) and suff_false (cause is absent).

• A ratio is calculated using the following formula: (suff_true / num_combos_true) / (suff_false
/ num_combos_false). In the output table (output = "table"), this value is stored in variable
ratio. In the nice output (output = "nice"), it is reported in the column Impact, which shows:
ratio [suff_true/num_combos_true vs. suff_false/num_combos_false]

• There are two special cases when calculating the ratio. When suff_true > 0 but suff_false
== 0, the outcome only occurs if the corresponding component cause is present. The ratio
then gets value necessary. When suff_true == 0 and suff_false == 0, the ratio gets
value not a cause.

Value

Either a dataframe (output = "table") with one row for every component cause and with variables id
(step ID), desc (step description), suff_true, suff_false, num_combos_true, num_combos_false,
and ratio, or a nicely formated output in the console (output = "nice"). See Details for more in-
formation.

Examples

Create some SCC model
steplist_checked <- check_steplist(steplist_rain)
scc_model <- create_scc(steplist_checked)

export_mechanism 9

Use the SCC model in effect_size()
effect_size(scc_model)

export_mechanism Export mechanisms

Description

Exports one or all sufficient cause mechanisms as PNG, PDF, SVG, or PostScript using DiagrammeR::export_graph().

Usage

export_mechanism(
mechanism,
sc = NULL,
file_name = NULL,
file_type = "png",
title = NULL,
...

)

Arguments

mechanism An object of class epicmodel_mechanism.

sc A single integer value (can be specified as numeric, e.g., 2 instead of 2L). If
provided, a graph is only exported for the specified sufficient cause, e.g., for SC2
if sc = 2. If sc = NULL (default), graphs for all sufficient causes are exported.

file_name The name of the exported file (including it’s extension).

file_type The type of file to be exported. Options for graph files are: png, pdf, svg, and
ps.

title An optional title for the output graph.

... Arguments passed on to DiagrammeR::export_graph

width Output width in pixels or NULL for default. Only useful for export to
image file formats png, pdf, svg, and ps.

height Output height in pixels or NULL for default. Only useful for export to
image file formats png, pdf, svg, and ps.

Value

Saves the mechanisms as PNG, PDF, SVG, or PostScript.

See Also

• DiagrammeR::export_graph()

• mechanism() for information on sufficient cause mechanisms

10 intervene

Examples

Derive mechanisms
mech <- mechanism(scc_rain)

Export mechanism plot of sufficient cause (sc) 1
if(interactive()){
tmp <- tempfile(fileext = ".png")
export_mechanism(mech, sc = 1, file_name = tmp, title = "Sufficient Cause 1")
unlink(tmp) # delete saved file
}

intervene Explore effect of interventions

Description

Interventions are steps without IF condition (start steps) that only appear in other IFNOT conditions,
i.e., that can only prevent steps but not cause them. Interventions are not considered when creating
SCC models using create_scc(). intervene() evaluates their impact in two directions: 1) which
sufficient causes can be prevented by certain (sets of) interventions and 2) which set of interventions
is at least needed to prevent the outcome in an individual with a given set of component causes.

Usage

intervene(scc, causes = NULL, intervention = NULL, output = c("nice", "table"))

Arguments

scc An object of class epicmodel_scc.

causes A character vector containing step IDs of component causes. If "all", investi-
gates all sufficient causes, i.e., all minimally sufficient sets of component causes.
If NULL (default), prints a list of all available component causes in the console.
If a set of step IDs is specified, only the specified set is investigated.

intervention A character vector containing step IDs of interventions. If "all", investigates all
possible combinations of available interventions. If NULL (default), prints a
list of all available interventions in the console. If a set of step IDs is specified,
investigates all possible combinations of the specified interventions.

output Either "nice" (default) or "table". If "nice", prints a nicely formatted summary
in the console. If "table", returns a list of several elements described in detail in
section "Value" below.

Details

The following algorithm is used to evaluate the effect of interventions:

• Derive the list of intervention sets to evaluate

• Derive the list of sets of component causes to evaluate

intervene 11

• Evaluate sufficiency without intervention for every set of component causes

• Evaluate sufficiency for every combination of intervention set and set of componen causes:
First, check which steps are prevented by the corresponding set of interventions, i.e., for which
steps the IFNOT condition is fulfilled by the intervention set. These steps are removed from
the list of available steps. Second, evaluate sufficiency based on the remaining steps similar to
create_scc() (Check sufficiency & Check IFNOT conditions).

• Evaluate, which intervention sets are minimal, i.e., at least necessary to prevent the outcome

Value

Output:
If output = "nice" (default), prints a nicely formatted output in the console. If output = "table",
returns a list with the following elements:

cause_set A list of character vectors with one element for every investigated set of component
causes. The character vectors contain the step IDs of the component causes that are part of
the corresponding set. Sets are named in a format similar to cc1, cc2, etc.

intv A list of character vectors with one element for every investigated set of interventions. The
character vectors contain the step IDs of the interventions that are part of the corresponding
set. Sets are named as intv1, intv2, etc.

status A data.frame with one row per set of component causes and one column per set of in-
tervention. In addition, contains one column representing no interventions (intv0). Each
cell contains the sufficiency status of the corresponding set of component causes when the
corresponding set of interventions is applied. Possible values are "always", "depends", and
"never". See below for an interpretation.

minimal A data.frame with one row per set of component causes and one column per set of
intervention. Each cell is either TRUE or FALSE indicating if the set of interventions is
minimal. For non-minimal sets of interventions, a smaller set which is contained within the
corresponding set exists and has the same preventive power. Minimality is defined separately
for every set of component causes. If both the larger non-minimal and the smaller minimal set
sometimes prevent the outcome (status "depends" in status (see above)), the non-minimal
set might actually prevent more sufficient orders of occurrence than the minimal set. In this
case, please inspect and compare element order (see next), for all minimal and non-minimal
sets of interventions with status "depends".

order A 2-level list, i.e., a list with one element per intervention set, for which each element
is another list with one element per evaluated set of component causes. Each interven-
tion/component causes combination contains a data.frame, similar to the data.frames in the
sc_order element of epicmodel_scc objects, if the corresponding status is "depends", or
is NA otherwise (for "always" or "never"). The data.frames contain two columns, which are
called "order" and "suff" (short for "sufficient"), and one row for every order of occurrence.
The order of occurrence is summarized in "order" (as character), while "suff" is either TRUE
or FALSE indicating if the corresponding order of occurrence is sufficient, i.e., leads to the
outcome, or not. Please note that the prevented orders of occurrence have suff == FALSE.

How to interpret status:
If the sufficiency status for a certain intervention in column intv0 is always, the three sufficiency
status options for a certain intervention have the following interpretations:

12 launch_steplist_creator

• always: The corresponding set of inteventions never prevents the outcome, because after
applying the intervention, the corresponding set of component causes is still always sufficient.

• depends: The corresponding set of interventions sometimes prevents the outcome, because
after applying the intervention, sufficiency for the corresponding set of component causes
depends on the order of occurrence.

• never: The corresponding set of interventions always prevents the outcome, because after
applying the intervention, the corresponding set of component causes is never sufficient.

If the sufficiency status for a certain intervention in column intv0 is depends, the sufficiency
status options for a certain intervention have the following interpretations:

• depends: The corresponding set of interventions sometimes or never prevents the outcome,
because after applying the intervention, sufficiency for the corresponding set of component
causes depends on the order of occurrence. Further inspection and comparison of sufficient
orders of occurrence is necessary to determine if the intervention actually prevents anything.

• never: The corresponding set of interventions always prevents the outcome, because after
applying the intervention, the corresponding set of component causes is never sufficient.

If the sufficiency status for a certain intervention in column intv0 is never, no intervention is
necessary, because the corresponding set of component causes is never sufficient.

Examples

Derive SCC model
scc_model <- scc_rain

Inspect the effect of interventions
intervene(scc_model, causes = "all", intervention = "all")
intv <- intervene(scc_model, causes = "all", intervention = "all", output = "table")

launch_steplist_creator

Launch steplist creator shiny app

Description

Run this function to start the Steplist Creator shiny app.

Usage

launch_steplist_creator()

Value

The launch_steplist_creator function is used for the side effect of starting the Steplist Creator
shiny app.

mechanism 13

Examples

if(interactive()){
launch_steplist_creator()
}

mechanism Investigate mechanisms

Description

Creates graphs that visiualize the mechanisms behind each sufficient cause using the DiagrammeR
package.

new_mechanism() and validate_mechanism() define the epicmodel_mechanism S3 class, which
is created by mechanism().

plot() renders the graphs in the RStudio Viewer.

print() prints the legend for node labels in the console.

Usage

mechanism(scc, modules = TRUE, module_colors = NULL)

new_mechanism(x = list())

validate_mechanism(x)

S3 method for class 'epicmodel_mechanism'
plot(x, reverse = TRUE, ...)

S3 method for class 'epicmodel_mechanism'
print(x, ...)

Arguments

scc For mechanism(), an object of class epicmodel_scc.

modules For mechanism(), TRUE (default) or FALSE, indicating if nodes in the same
module should be colored equally (TRUE) or if all nodes have white background
(FALSE). Colors are only applied, if modules have actually been specified in the
epicmodel_steplist. If modules are considered by mechanism(), the module
keywords are added to the legend (accessable via print()).

module_colors For mechanism(), if nodes are colored by module, colors can be provided via
this argument. Colors must be provided as a character vector. Both named
colors and hexadecimal color codes are allowed. The function has 8 colors
stored internally. If module_colors = NULL (default), these colors are used. If
the model has more than 8 modules, module_colors must be specified. If more
colors than necessary are specified, the function takes as many as necessary from
the start of the vector.

14 mechanism

x x is used in several functions:

• new_mechanism(): A list to be converted to class epicmodel_mechanism.
• validate_mechanism(): An object of class epicmodel_mechanism to be

validated.
• plot.epicmodel_mechanism(): An object of class epicmodel_mechanism.
• print.epicmodel_mechanism(): An object of class epicmodel_mechanism.

reverse For plot.epicmodel_mechanism(), TRUE or FALSE indicating if the output
should be displayed in reverse order. Since graphs rendered later show up first
in the viewer pane, reverse = T leads to SC1 being the last rendered and the one
displayed on top.

... Additional arguments for generics print() and plot().

Details

The graphs:
One graph per sufficient cause is created. The graphs display steps as nodes and IF/IFNOT rela-
tions as edges. Nodes will not be labeled with their IDs or descriptions due to limited space, but
with newly created labels. These labels are based on the type of node and are listed together with
the step description in the legend (accessed by print()). Step descriptions are also accessible
via tooltips in the graph. Just put your cursor on the node labels.
There are 4 different types of nodes:

• Component causes: Labeled "CC", squares, gray border
• Interventions: Labeled "I", triangles, gray border
• End steps: Labeled "E", circles, black border
• Other steps: Labeled "S", circles, gray border

There are 2 types of edges:

• IF conditions: gray arrows
• IFNOT conditions: red and T-shaped

epicmodel_mechanism objects:
epicmodel_mechanism objects are created by mechanism(). They are lists containing 2 ele-
ments:

legend A data.frame with up to 3 variables:
• Label: Contains the labels used in the graphs.
• Module: Contains the name of the module to which this step belongs. Only available if
modules = TRUE in mechanism() and if the SCC model actually uses modules (specified
in element sc_use_modules of epicmodel_scc objects).

• Step: A description of the corresponding step.
graph A list of length equal to the number of sufficient causes. Each element contains another

list with 2 elements:
• ndf: A data.frame containing information about nodes in the graph (see DiagrammeR::node_aes()).
• edf: A data.frame containing information about edges in the graph (see DiagrammeR::edge_aes()).

ndf Data.frames containing the following variables:
• id: Node ID used internally by DiagrammeR to define edges (from and to in edf data.frames).

mechanism 15

• type: Type of node as defined by epicmodel. Possible options are: cc (component
cause), int (intervention), end (step that is part of an outcome definition), other (all
other steps).

• label: The label displayed in the graph and listed in variable Label of legend.
• tooltip: The text displayed when putting the cursor on top of the node label. Corre-

sponds to the step descriptions in variable Step of legend.
• shape: The shape of the node. square for type cc, triangle for type int, and circle

for types end and other.
• color: Color of the node border. Gray for types cc, int, and other, and black for type
end.

• fillcolor: Color of the background, which is similar for all steps in the same module.
If modules are not considered, fillcolor is white for all nodes.

• fontcolor: Color of the node label. Always black.
edf Data.frames containing the following variables:

• id: Edge ID used internally by DiagrammeR.
• from: Node ID of the node from which the edge starts.
• to: Node ID of the node at which the edge ends.
• rel: Type of edge as defined by epicmodel. Possible options are: if (from node is in

IF condition of to node), ifnot (from node is in IFNOT condition of to node).
• arrowhead: Type of arrow. normal for rel if and tee for rel ifnot.
• arrowsize: Size of arrow. 1 for rel if and 1.2 for rel ifnot.
• color: Color of arrow. Gray for rel if and #A65141 for rel ifnot.

Value

• mechanism(): An object of class epicmodel_mechanism. Use plot() to plot the graphs in
the RStudio Viewer. Use print() to print the legend in the console. Use export_mechanism()
to save the graphs as PNG, PDF, SVG, or PostScript.

• new_mechanism(): An object of class epicmodel_mechanism.

• validate_mechanism(): An object of class epicmodel_mechanism that has been checked to
have the correct structure.

• plot.epicmodel_mechanism(): Renders the graphs in the RStudio Viewer.

• print.epicmodel_mechanism(): Prints the legend of the epicmodel_mechanism object in
the console.

See Also

• export_mechanism() for saving the plots

• DiagrammeR::node_aes() for a list of node-related variables in DiagrammeR

• DiagrammeR::edge_aes() for a list of edge-related variables in DiagrammeR

Examples

Create some SCC model
steplist_checked <- check_steplist(steplist_rain)

16 necessary_causes

scc_model <- create_scc(steplist_checked)

Derive mechanisms
mech <- mechanism(scc_model)

new_mechanism() and validate_mechanism() are used inside mechanism()
nonetheless, you can check its structure using validate_mechanism()
validate_mechanism(mech)

Plot the mechanisms
plot(mech)

Print the legend
print(mech)
mech

necessary_causes Extract necessary causes

Description

Necessary causes are component causes, which are part of every sufficient cause and, therefore,
have to be present in order for the outcome to occur.

Usage

necessary_causes(scc, output = c("id", "desc", "desc_no_start"))

Arguments

scc An object of class epicmodel_scc.

output A single element of type character determining the type of output. Either id
(default), desc, or desc_no_start. See section "Value" below for a description
of the output.

Value

A character vector containing all necessary causes. Depending on the value of output, the vector
contains either step IDs (output = "id"), step descriptions (output = "desc"), or step descriptions
but with the "Start: " in the beginning removed (output = "desc_no_start").

Examples

necessary_causes(scc_rain)

new_scc 17

new_scc SCC model objects

Description

The S3 class epicmodel_scc is used to store information on sufficient-component cause (SCC)
models created by create_scc().

new_scc(), validate_scc(), and empty_scc() define the S3 class.

print() prints a summary of SCC models in the console. summary() and print() are identical.

plot() creates the familiar causal pie charts from an object of class epicmodel_scc.

Usage

new_scc(x = list())

validate_scc(x)

empty_scc()

S3 method for class 'epicmodel_scc'
print(x, ...)

S3 method for class 'epicmodel_scc'
summary(object, ...)

S3 method for class 'epicmodel_scc'
plot(
x,
remove_sc = NULL,
sc_label = NULL,
unknown = TRUE,
names = TRUE,
text_color = NULL,
pie_color = NULL,
border_color = NULL,
...

)

Arguments

x x is used in several functions:

• new_scc(): A list to be converted to class epicmodel_scc.
• validate_scc(): An object of class epicmodel_scc to be validated.
• print.epicmodel_scc(): An object of class epicmodel_scc.
• plot.epicmodel_scc(): An object of class epicmodel_scc.

18 new_scc

... Additional arguments for generics print(), summary(), and plot().

object For summary.epicmodel_scc(), an object of class epicmodel_scc.

remove_sc For plot.epicmodel_scc(), a vector of integerish numbers, i.e., integers that
can be specified as numeric, i.e., 1 and 1L are both possible. Removes the suffi-
cient cause (SC) with the specified index from the plot, i.e., for remove_sc = 2,
removes SC 2, and for remove_sc = c(2,3), removes SC 2 and SC 3. If there
are x sufficient causes in the model, x is the highest allowed value. At least one
sufficient cause needs to remain, i.e., not all sufficient causes can be removed.
If NULL (default), all sufficient causes are plotted.

sc_label For plot.epicmodel_scc(), a character vector with the labels written above
the pies, i.e., sufficient causes. If NULL (default), "Sufficient Cause 1", "Suffi-
cient Cause 2", etc. are used. If specified, try to provide as many labels as there
are pies in the plot. Duplicates are not allowed.

unknown For plot.epicmodel_scc(), TRUE (default) or FALSE. If TRUE, unknown
causes are added to the SCC model: every sufficient cause gets an additional
individual unknown component cause representing additional unknown compo-
nents; an unknown sufficient cause is added to the model consisting of a single
unknown component cause and representing all unknown sufficient causes.

names For plot.epicmodel_scc(), TRUE (default) or FALSE. If TRUE, includes the
translation of pie segment names to descriptions of component causes in the
plot.

text_color For plot.epicmodel_scc(), a single element of type character, which is a valid
color description. Valid color descriptions can be named colors ("white") or
hexadecimal color codes ("#FFFFFF"). text_color will be used for the pie
segment names. If NULL (default), "white" is used.

pie_color For plot.epicmodel_scc(), a character vector of length 3 containing valid
color descriptions. Valid color descriptions can be named colors ("white") or
hexadecimal color codes ("#FFFFFF"). The first element of pie_color is used
to color sufficient causes, which are always sufficient. The second element is
used to color sufficient causes, for which sufficiency depends on the order of
occurrence. The third element is used to color the unknown sufficient cause,
which is present if unknown is TRUE. If NULL (default), the following colors
are used: "#B1934A", "#A65141", "#394165"

border_color For plot.epicmodel_scc(), a single element of type character, which is a
valid color description. Valid color descriptions can be named colors ("white")
or hexadecimal color codes ("#FFFFFF"). border_color will be used for all
pie borders apart from the unknown sufficient cause. Therefore, only specify
border_color if unknown is FALSE. If NULL (default), "white" is used. (Bor-
ders for the unknown sufficient cause have the same color as the pie.)

Details

epicmodel_scc objects:
epicmodel_scc objects are lists containing 10 elements. These elements are described below:

sc_cc A data.frame with one column for every component cause and one row for every sufficient
cause. Colnames are the step IDs from the corresponding steplist. Rownames are sufficient

new_scc 19

cause IDs (see below). Each cell contains either TRUE or FALSE indicating if the component
cause in the column is part of a set of component causes described by the row.

sc_status A named character vector with one element for every sufficient cause. The names
are sufficient cause IDs (see below). The elements contain the status of the sufficient cause
(see below). Here, only "always", "depends", and "depends (potential order implausibilities)"
appear.

sc_steps A list of character vectors with one list element for every sufficient cause. The list is
named using sufficient cause IDs (see below). Every character vector contains the step IDs
of all steps that are part of the corresponding sufficient cause, i.e., that can be caused by the
corresponding set of component causes.

sc_order A list with one list element for every sufficient cause. The list is named using sufficient
cause IDs (see below). List elements are either NA (if a sufficient cause’s status is "always")
or a data.frame (if a sufficient cause’s status is "depends" or "depends (potential order im-
plausibilities)". Data.frames contain two columns, which are called "order" and "suff" (short
for "sufficient"), and one row for every order of occurrence. The order of occurrence is sum-
marized in "order" (as character), while "suff" is either TRUE or FALSE indicating if the
corresponding order of occurrence is sufficient, i.e., leads to the outcome, or not.

sc_implausibilities A named vector of TRUE and FALSE with length equal to the number
of sufficient causes. The names are sufficient cause IDs (see below). Is TRUE if for the
corresponding sufficient cause there are potential order implausibilities, i.e., if its status is
"depends (potential order implausibilities)", and is FALSE otherwise.

sc_implausibilities_detail A list with one list element for every sufficient cause. The list is
named using sufficient cause IDs (see below). List elements are either NA (if the correspond-
ing element in sc_implausibilities is FALSE) or a character vector (if the corresponding
element in sc_implausibilities is TRUE) with the THEN statements of the steps that
might be involved in implausible orders of occurrence.

sc_use_modules Either TRUE or FALSE indicating if modules have been specified in the steplist.
unknown_cc Similar to sc_cc but includes unknown component causes and an unknown suffi-

cient cause (see "Unknown causes" below). It therefore additionally contains:
• one column to the right for every sufficient cause with name "Urownumber" (U1, U2,

etc.) and all values equal to FALSE appart from row rownumber, which is TRUE
• one additional column to the right with name "USC" and all values equal to FALSE for

all sufficient causes
• one additional row with name "cc0" and all values equal to FALSE apart from column

"USC", which is TRUE
unknown_status Similar to sc_status but has one additional element with value "unknown"

and name "cc0" (see "Unknown causes" below).
steplist The object of class epicmodel_steplist_checked that has been the input to function

create_scc(), from which the epicmodel_scc object has been created.

Other details::
Sufficient cause IDs create_scc() checks every combination of component causes for suf-

ficiency. Every combination is assigned an ID of the format "ccnumber" (cc1, cc2, etc.).
epicmodel_scc only contains information about minimally sufficient combinations of com-
ponent causes, but the initial IDs are kept. The IDs are used throughout the different ele-
ments of epicmodel_scc to link information that belongs to the same sufficient cause. The
unknown sufficient cause used in elements unknown_cc and unknown_status has ID cc0.

20 new_scc

Unknown causes Since many causes might be unknown, it is reasonable for some applications
to include these unknown causes in a SCC model (see, e.g., Rothman et al. (2008)). They are
also useful to remind us of our limited knowledge. In a suffcient-component cause model,
unknown causes come in two flavors:

• Unknown component causes: These are additional component causes within a sufficient
cause, which are necessary for sufficiency. Please note that each sufficient cause has its
own set of unknown component causes. In unknown_cc, unknown component causes are
called U1, U2, etc.

• Unknown sufficient causes: There might be unknown mechanisms that lead to out-
come occurrence. These sufficient causes are summarized in one additional sufficient
cause, which has only a single component cause called USC in unknown_cc. This set of
component causes has sufficient cause ID cc0.

Please note that in plot_dag() an ellipse represents a determinative set of sufficient causes,
as suggested and defined by VanderWeele & Robins (2007). A determinative set contains all
sufficient causes and, therefore, in most cases, an unknown sufficient cause is necessary to
at least achieve a theoretical determinative set. Determinative sets are important for creating
causal diagrams (in the form of directed acyclic graphs) from SCC models. VanderWeele and
Robins (2007) write (p. 1099, D refers to the outcome):
"To ensure that the DAG with the sufficient causation structure is itself a causal DAG, it
is important that the set of sufficient causes for D on the graph be a determinative set of
sufficient causes — that is, that the sufficient causes represent all of the pathways by which
the outcome D may occur. Otherwise certain nodes may have common causes which are not
on the graph, and the graph will then not be a causal DAG."
It can of course be argued that an unknown sufficient cause in the described form is hardly of
any use when creating a causal graph (as a DAG) from a SCC model. Nonetheless, it can be,
as mentioned, a placeholder and reminder of limited knowledge.

Sufficiency status The sufficiency status describes under which circumstances a certain set
of component causes is sufficient. There are 5 possible values:

• always: The set of component causes is always sufficient.
• depends: The set of component causes is sometimes sufficient and sufficiency depends

on the order of occurrence of the involved steps, because some of them contain IFNOT
conditions. However, if an IFNOT condition prevents the step from happening depends
on the order of occurrence: if the IF condition is fulfilled before the IFNOT condition,
the step (usually) occurs anyways, similar to how I do not care if a door is closed if I
already went through it when it was still open.

• depends (potential order implausibilities): Same as "depends", but in the list
of potential orders of occurrence of the involved steps, there might be some that do not
make sense in practice, e.g., when two steps with IFNOT conditions are chained together:
Imagine Step1 having IF condition If1 and IFNOT condition Ifnot1, and Step2 having
IF condition If2 and IFNOT condition Step1. The order Step1 -> Ifnot1 -> If1 -> If2
is not plausible because Ifnot1 occurred before If1 and therefore Step1 did never occur.
The user needs to discard these orders of occurrence (as I am currently not confident to
correctly remove only implausible ones with code).

• never: The set of component causes is never sufficient. This status is not used in
epicmodel_scc. It’s only used when investigating the effect of interventions (see intervene()).

• unknown: This is the status of the unknown sufficient cause, which is added to the SCC
model. It’s only used in element unknown_status of epicmodel_scc objects.

new_scc 21

Value

• new_scc(): An object of class epicmodel_scc.

• validate_scc(): An object of class epicmodel_scc that has been checked to have the cor-
rect structure.

• empty_scc(): A (realtively) empty object of class epicmodel_scc with correct structure.

• print.epicmodel_scc(): Prints a summary of the object of class epicmodel_scc in the
console.

• summary.epicmodel_scc(): Same as print.epicmodel_scc().

• plot.epicmodel_scc(): A ggplot object.

References

• Rothman KJ, Greenland S, Poole C, Lash TL (2008): Causation and Causal Inference. In:
Rothman KJ, Greenland S, Lash TL (Ed.): Modern epidemiology. Third edition. Philadelphia,
Baltimore, New York: Wolters Kluwer Health Lippincott Williams & Wilkins, pp. 5–31.

• VanderWeele TJ, Robins JM (2007): Directed acyclic graphs, sufficient causes, and the prop-
erties of conditioning on a common effect. American Journal of Epidemiology 166 (9):
1096–1104.

See Also

• create_scc() for information on the algorithm for creating SCC models

• plot_dag() for how determinative sets of component causes are displayed in a DAG

• intervene() for the use of sufficiency status "never"

Examples

epicmodel_scc object are created by create_scc()

first, check your steplist of choice
steplist_checked <- check_steplist(steplist_rain)
then, use it in create_scc()
scc_model <- create_scc(steplist_checked)

new_scc() and validate_scc() are used inside create_scc()
nonetheless, you can check its structure with validate_scc()
validate_scc(scc_model)

print() and summary() both summarize the model in the console
print(scc_model)
scc_model
summary(scc_model)

plot causal pies with plot()
plot(scc_model)

22 new_steplist

new_steplist Steplist objects

Description

The S3 classes epicmodel_steplist and epicmodel_steplist_checked store the input informa-
tion for SCC model creation. They are created from the Steplist Creator shiny app, which can be
launched with launch_steplist_creator().

new_steplist(), validate_steplist(), and empty_steplist() define the S3 class.

print() prints a summary of the steplist entries in the console.

summary() prints a list of steps sorted by type of step in the console.

plot() renders a graph of the complete network of mechanisms in the RStudio Viewer.

Usage

new_steplist(x = list())

validate_steplist(x)

empty_steplist()

S3 method for class 'epicmodel_steplist'
print(x, ...)

S3 method for class 'epicmodel_steplist_checked'
print(x, ...)

S3 method for class 'epicmodel_steplist'
summary(object, ...)

S3 method for class 'epicmodel_steplist_checked'
summary(object, ...)

S3 method for class 'epicmodel_steplist'
plot(x, ...)

S3 method for class 'epicmodel_steplist_checked'
plot(x, modules = TRUE, module_colors = NULL, render = TRUE, ...)

Arguments

x x is used in several functions:

• new_steplist(): A list to be converted to class epicmodel_steplist.
• validate_steplist(): An object of class epicmodel_steplist or epicmodel_steplist_checked

to be validated.

new_steplist 23

• print.epicmodel_steplist(): An object of class epicmodel_steplist.
• print.epicmodel_steplist_checked(): An object of class epicmodel_steplist_checked.
• plot.epicmodel_steplist(): An object of class epicmodel_steplist.
• plot.epicmodel_steplist_checked(): An object of class epicmodel_steplist_checked.

... Additional arguments for generics print(), summary(), and plot().

object For summary.epicmodel_steplist(), an object of class epicmodel_steplist.
For summary.epicmodel_steplist_checked(), an object of class epicmodel_steplist_checked.

modules For plot.epicmodel_steplist_checked, TRUE (default) or FALSE, indicat-
ing if nodes in the same module should be colored equally (TRUE) or if all
nodes have white background (FALSE). Colors are only applied, if modules
have actually been specified in the epicmodel_steplist.

module_colors For plot.epicmodel_steplist_checked, if nodes are colored by module, col-
ors can be provided via this argument. Colors must be provided as a character
vector. Both named colors and hexadecimal color codes are allowed. The func-
tion has 8 colors stored internally. If module_colors = NULL (default), these
colors are used. If the model has more than 8 modules, module_colors must
be specified. If more colors than necessary are specified, the function takes as
many as necessary from the start of the vector.

render For plot.epicmodel_steplist_checked, if TRUE (default), graph is directly
rendered. IF FALSE, the output contains the non-rendered graph.

Details

epicmodel_steplist objects:
epicmodel_steplist objects are lists containing 8 data.frames. These data.frames are described
below:

what A list of subjects and objects (WHAT segments) appearing in the step descriptions, e.g.,
cells, interleukins, symptoms, etc., with the following variables:

• id_what: Automatically created ID for WHAT segments. Starts with "a" followed by a
number, e.g., a1. Used in creating automatic step IDs.

• key_what: Keyword describing the WHAT segment. Used in steplist_creator shiny app
dropdown menus.

• desc_what: Text used in step descripiton.
• plural_what: Indicates if plural (1) or singular (0) version of the DOES description

should be used, if this WHAT segment is used as subject, i.e., WHAT segment before
the DOES segment.

does A list of actions or verbs (DOES segments), with which the WHAT segments interact, e.g.,
is present, produce, migrate, exposed to, with the following variables:

• id_does: Automatically created ID for DOES segments. Starts with "d" followed by a
number, e.g., d1. Used in creating automatic step IDs.

• key_does: Keyword describing the DOES segment. Used in steplist_creator shiny app
dropdown menus.

• subject_singular_does: Description used if subject (WHAT segment in front) has been
specified as singular (plural_what=0).

24 new_steplist

• subject_plural_does: Description used if subject (WHAT segment in front) has been
specified as plural (plural_what=1).

• no_subject_does: Description used if no subject (WHAT segment in front) has been
specified.

• then_object_does: Indicates if the object for this DOES segment is a WHAT segment (0)
or a THEN statement (1).

where A list of locations (WHERE segments), where the specified actions take place, e.g., in the
airways, with the following variables:

• id_where: Automatically created ID for WHERE segments. Starts with "e" followed by
a number, e.g., e1. Used in creating automatic step IDs.

• key_where: Keyword describing the WHERE segment. Used in steplist_creator shiny
app dropdown menus.

• desc_where: Text used in step descripiton. Please include the corresponding preposition,
e.g., ’in’, ’into’, ’on’, etc.

then A list of combinations of WHAT, DOES and WHERE segments (THEN statements). A
THEN statement can contain up to 4 segments: WHAT (subject), DOES, WHAT (object),
WHERE. Not all 4 of them need to be specified. For some DOES segments, the corre-
sponding object is not a WHAT segment but a THEN statement (see then_object_does).
In general, all combinations are possible, although only DOES, only WHERE, and WHAT
WHAT do not make a lot of sense. then exists to store the THEN statements that are later
used in IF and IFNOT conditions. It contains the following variables:

• id_then: Automatically created ID based on segment IDs, e.g., a4, a1d5a15e9, d2a3.
• desc_then: Automatically created description based on segment descriptions.

module Modules are groups, into which the steps are sorted, e.g., immune system, lung, etc., as it
is sometimes of interest to see which groups are involved in the sufficient causes. It contains
the following variables:

• id_module: Automatically created ID for modules. Starts with "m" followed by a num-
ber, e.g., m1.

• key_module: Keyword describing the module.
• desc_module: Module description.

step Main table of interest and the one further processed to create sufficient-component cause
models. It contains the following variables:

• id_step: Automatically created step ID based on IDs of included THEN statements, e.g.,
IFd6a10IFNOTd6a18+d1a8THENa11d3a12.

• desc_step: Automatically created step description based on descriptions of included
THEN statements.

• end_step: Indicator variable that describes if this step is at the end of a certain sub-
mechanism, e.g., symptom x occured.

• module_step: Module, i.e., group, into which this step has been sorted.
• note_step: Additional notes that are important for future users, e.g., if there are conflict-

ing results or if the result is from a mouse model.
• ref_step: References on which this step is based.

icc ICC is short for incompatibel component causes. It contains pairs of component causes, i.e.,
steps without IF or IFNOT condition, that are not compatible with each other, i.e., cannot
appear in the same sufficient cause. It contains the following variables:

new_steplist 25

• id_icc: Automatically created ID for ICC pairs. Starts with "i" followed by a number,
e.g., i1.

• id1: Step ID of first component cause.
• id2: Step ID of second component cause.
• desc1: Step description of first component cause.
• desc2: Step description of second component cause.

outc A list that contains conditions under which the outcome of interest is assumed to occur.
Each line might contain one or more THEN statements, that have been marked as end steps by
setting step$end_step to 1. If more than one THEN statement is selected, they are combined
with AND logic. All lines in this table are combined with OR logic, i.e., any of the specified
conditions is assumed to represent outcome occurrence. The table contains the following
variables:

• id_outc: Automatically created ID for outcome definitions as a combination of the THEN
statement IDs connected by ’+’.

• desc_outc: Automatically created description for the outcome definitions as a combina-
tion of the THEN statement descriptions.

epicmodel_steplist_checked objects:
Before using epicmodel_steplist object for SCC model creation in create_scc(), they need
to be checked for any structures that might make SCC model creation impossible. Checking is per-
formed by check_steplist() and if successful, the returned object is of type epicmodel_steplist_checked.
When changing the steplist in the Steplist Creator shiny app or by functions remove_all_modules(),
remove_na(), or remove_segment(), the steplist is "un-checked" and returned as class epicmodel_steplist.
Apart from that, both classes have similar structure, which can be validated by validate_steplist().

Value

• new_steplist(): An object of class epicmodel_steplist.

• validate_steplist(): An object of class epicmodel_steplist or epicmodel_steplist_checked,
that has been checked to have the correct structure.

• empty_steplist(): An empty object of class epicmodel_steplist object with correct
structure.

• print.epicmodel_steplist(): Prints the number of entries in each data.frame in the con-
sole and the information that the steplist is unchecked.

• print.epicmodel_steplist_checked(): Same as print.epicmodel_steplist() but with
the information the the steplist has been checked successfully.

• summary.epicmodel_steplist(): Prints an allert that the steplist needs to be checked with
check_steplist() before using summary().

• summary.epicmodel_steplist_checked(): Prints a list of steps by type of step in the con-
sole.

• plot.epicmodel_steplist(): Prints an allert that the steplist needs to be checked with
check_steplist() before using plot().

• plot.epicmodel_steplist_checked(): Prints a graph of the complete network of mecha-
nisms in the RStudio Viewer and the corresponding legend in the console.

26 plot_dag

Examples

Create steplists in the Steplist Creator `shiny` app
if(interactive()){
launch_steplist_creator()
}

Download the steplist from the `shiny` app
Load the steplist into R
path <- system.file("extdata", "steplist_rain.rds", package = "epicmodel")
steplist <- readRDS(path)

new_steplist(), validate_steplist(), and empty_steplist() are used in the `shiny` app
nonetheless, you can check steplist structures with validate_steplist()
validate_steplist(steplist)

print() provides a summary of steplist entries and if it's checked or unchecked
print(steplist)

Check steplist before using `summary()` and `plot()`
steplist_checked <- check_steplist(steplist)
summary(steplist_checked)
plot(steplist_checked)

plot_dag Plot DAG

Description

Creates a ggplot from a dagitty object, using packages dagitty and ggdag. Mimics format and
colors used on the dagitty homepage https://www.dagitty.net. Please note the recommendation in
argument label_shift below: Getting the values for label_shift right can be an iterative and
slightly tedious procedure. It is highly recommended to evaluate the result of the current values
already in the saved plot using, e.g., ggsave and not in the RStudio Viewer.

Usage

plot_dag(
dag,
node_outc = NULL,
node_expo = NULL,
node_adj = NULL,
node_latent = NULL,
path_causal = NULL,
path_biased = NULL,
label = NULL,
label_shift = NULL,
label_size = 2.5,
node_size = 7,

plot_dag 27

node_stroke = 1,
e_w = 0.4,
cap_mm = 4,
scc = FALSE,
scc_size = c(0.1, 0.35),
scc_shift = c(0, 0),
scc_angle = 0

)

Arguments

dag An object of class dagitty. Can be created by using dagitty::dagitty('[model_code]')
or scc_to_dag(). If your DAG has been created by scc_to_dag(), make sure
to pass only the first element (named dag) to plot_dag.

node_outc A single element of type character or NULL (default). If the outcome has not
yet been specified in dag, it can be done here by specifiying the name of the
corresponding node.

node_expo A single element of type character or NULL (default). If the exposure has not
yet been specified in dag, it can be done here by specifiying the name of the
corresponding node.

node_adj A character vector or NULL (default). Specify the names of nodes that should
be defined as "adjusted".

node_latent A character vector or NULL (default). Specify the names of nodes that should
be defined as "latent".

path_causal A character vector or NULL (default). Specify the names of the paths in format
"V1->V2" that should be defined as "causal".

path_biased A character vector or NULL (default). Specify the names of the paths in format
"V1->V2" that should be defined as "biased".

label A named character vector or NULL (default). Change the name of nodes in the
graph, i.e., labels. The vector elements correspond to the new names, the vector
names correspond to the old node names, i.e., label = c(old_name = "new_name").

label_shift A named list (with all elements being numerical vectors of length 2) or NULL
(default). Numerical values are used to move the labels of the correspond-
ing nodes in x and y direction, respectively. The list names correspond to the
nodes to which the values apply. Possible list names are the node names (initial
names prior to changing them via label), node types, i.e., outcome, exposure,
adjusted, latent, and other, as well as all, which applies to all nodes. If
a node is addressed by several entries, e.g., its name and all, all entries are
summed up. See the example below. Getting the values for label_shift right
can be an iterative and slightly tedious procedure. It is highly recommended
to evaluate the result of the current values already in the saved plot using, e.g.,
ggsave and not in the RStudio Viewer.

label_size A single numeric value, which controls the font size of the label. Default is 2.5.

node_size A single numeric value, which controls the size of the circle that represents the
node. Default is 7.

28 plot_dag

node_stroke A single numeric value, which controls the size of the black border around the
node circles. Default is 1.

e_w A single numeric value, which controls edge width. Default is 0.4.

cap_mm A single numeric value, which controls the distance, i.e., white space, between
when the node ends and the edge begins/ the edge ends and the node begins.
Higher values correspond to shorter edges/arrows. Default is 4.

scc TRUE or FALSE (default). Only applies to DAGs that are based on sufficient-
component cause (SCC) models. If TRUE, an ellipse is added to the DAG,
which should surround all sufficient cause variables, if they are a determinative
set of sufficient causes, as suggested by VanderWeele and Robins (2007). If the
DAG is not based on a SCC, leave scc at FALSE.

scc_size A numeric vector of length 2, which controls the size of the ellipse. Default is
c(0.1, 0.35).

scc_shift A numeric vector of length 2, which controls the shift of the complete ellipse in
x and y direction. Default is c(0, 0).

scc_angle A single numeric value, which controls rotiation of the ellipse in degree units.
Default is 0.

Value

A ggplot object.

References

VanderWeele TJ, Robins JM (2007): Directed acyclic graphs, sufficient causes, and the properties
of conditioning on a common effect. American Journal of Epidemiology 166 (9): 1096–1104.

See Also

• dagitty::dagitty()

• scc_to_dag() for creating DAGs from SCC models

• SCC models for more information on SCC models

Examples

Transform SCC model into a DAG
dag <- scc_to_dag(scc_rain)[["dag"]]

Plot DAG
plot_dag(dag, label_shift = list(all = c(0,0.15), outcome = c(0.05,0)))

plot_dag() works also with dagitty objects created in other ways
dag_to_plot <- dagitty::dagitty('dag {
bb="-2.628,-2.412,2.659,2.378"
V1 [pos="-2.128,-1.912"]
V2 [pos="-0.031,0.035"]
V3 [pos="2.159,1.878"]
V1 -> V2

prevent 29

V2 -> V3
}')
plot_dag(dag_to_plot, node_outc = "V3", node_expo = "V1", label = c(V3 = "outcome"))

prevent Explore effect of prevention

Description

Prevention refers to the avoidance of component causes, i.e., of elements of sufficient causes. For
a given set of component causes, prevent() derives, which of them need to be "removed" in or-
der to avoid outcome occurrence. Reported are the smallest prevention sets, i.e., with the fewest
component causes.

Usage

prevent(scc, causes = NULL, output = c("nice", "table"))

Arguments

scc An object of class epicmodel_scc.

causes A character vector containing step IDs of component causes. If NULL (default),
prints a list of all available component causes in the console.

output Either "nice" (default) or "table". If "nice", prints a nicely formatted summary
in the console. If "table", returns a data.frame (described in section "Value"
below).

Details

The following algorithm is used to evaluate the effect of prevention:

• Evaluate if causes is sufficient for outcome occurrence. If not, report so and stop.

• Derive a list of all combinations of the component causes provided in causes. The set "all
causes present" is not evaluated as it is already known to be sufficient. In addition, the set "all
causes absent", i.e., "all causes prevented" is considered.

• Evaluate sufficiency for every set

• Subset the list of cause sets to the ones, which are not sufficient, because for them prevention
was successful.

• Turn all FALSE to TRUE and all TRUE to FALSE. Now, FALSE indicates present and TRUE
indicates absent, i.e., prevented.

• Evaluate, which prevention sets are minimal, i.e., the smallest set to prevent the outcome.

30 remove_all_modules

Value

If output = "nice" (default), prints a nicely formatted output in the console. If output = "table",
returns a data.frame with one row for every prevention set and one column for every component
cause provided in argument causes. All cells are either TRUE or FALSE with TRUE indicating that
the corresponding variable needs to be prevented in the corresponding set, and FALSE indicating
that prevention in the corresponding set is not necessary.

Examples

Derive SCC model
scc_model <- scc_rain

Derive prevention sets
prevent(scc_model, causes = c("IFNOTd6a6THENd5a6","THENa5","THENa1","THENd2a3"))

remove_all_modules Remove all modules

Description

Removes all entries in data.frame module from an epicmodel_steplist object. Also turns all
values of variable module_step in data.frame step from an epicmodel_steplist to empty strings.

Usage

remove_all_modules(steplist)

Arguments

steplist An epicmodel_steplist or epicmodel_steplist_checked object.

Value

An epicmodel_steplist object with empty data.frame module and empty strings in variable
module_step in data.frame step. When continuing with this steplist, SCC models cannot be in-
spected by module. If you made any changes, you need to call check_steplist() again.

Examples

x <- remove_all_modules(steplist_party)

remove_na 31

remove_na Removing NA in icc and outc

Description

Remove any entries that only consist of NA from data.frames icc (Incompatible Component Causes)
and outc (outcome definition) from an epicmodel_steplist.

Usage

remove_na(steplist)

Arguments

steplist An epicmodel_steplist or epicmodel_steplist_checked object.

Value

An epicmodel_steplist object without entries in data.frame icc, which contain ’NA’ in either
id1 or id2 as well as entries in data.frame outc that contain ’NA’ in id_outc. If you made any
changes, you need to call check_steplist() again.

Examples

x <- remove_na(steplist_party)

remove_segment Remove segments

Description

Removes individual entries from data.frames what, does, where, module, or icc.

Usage

remove_segment(steplist, id)

Arguments

steplist An epicmodel_steplist or epicmodel_steplist_checked object.

id A single non-missing element of type character describing the ID of the entry
you want deleted.

Value

An epicmodel_steplist class object. If you made any changes, you need to call check_steplist()
again.

32 scc_cause_sets

Examples

steplist_party <- remove_segment(steplist_party, "d4")

scc_cause_sets Extracting component causes from SCC model

Description

Extracting component causes by sufficient cause from an epicmodel_scc object.

Usage

scc_cause_sets(
scc,
output = c("id", "desc", "desc_no_start", "all"),
depends = TRUE,
unknown = FALSE

)

Arguments

scc An object of class epicmodel_scc.

output A single element of type character, which determines the type of output. Op-
tions are "id", "desc", "desc_no_start", and "all". See returns-part below for
description.

depends TRUE (default) or FALSE. If FALSE, only includes sufficient causes with sc_status
"always".

unknown TRUE or FALSE (default). If TRUE, unknown causes are added to the SCC
model: every sufficient cause gets an additional individual unknown compo-
nent cause representing additional unknown components; an unknown sufficient
cause is added to the model consisting of a single unknown component cause and
representing all unknown sufficient causes.

Value

A named list but its content depends on parameter "output". The names correspond to the compo-
nent cause set IDs, i.e., cc[[:digit:]]+.

• id: Returns a named list of character vectors. Each vector contains the step IDs of its compo-
nent causes.

• desc: Returns a named list of character vectors. Each vector contains the step descriptions of
its component causes.

• desc_no_start: Returns a named list of character vectors. Each vector contains the step de-
scriptions of its component causes, but with the "Start: " in the beginning removed.

• all: A named list of the three lists above. The names correspond to the corresponding option
for parameter "output".

scc_rain 33

Examples

Create some SCC model
steplist_checked <- check_steplist(steplist_rain)
scc_model <- create_scc(steplist_checked)

Get sets of component causes that form the sufficient causes
scc_cause_sets(scc_model, output = "all")

scc_rain Rain example SCC model

Description

An example SCC model created from steplist_rain.

Usage

scc_rain

Format

An object of class epicmodel_scc, which is a list of 10 elements. See new_scc() for the detailed
structure of epicmodel_scc class objects.

scc_to_dag Transform SCC to DAG

Description

Creates an object of class dagitty (dagitty package) from a SCC model, following VanderWeele
and Robins (2007).

Usage

scc_to_dag(scc, unknown = TRUE)

Arguments

scc An object of class epicmodel_scc.

unknown TRUE (default) or FALSE. If TRUE, unknown causes are added to the SCC
model: every sufficient cause gets an additional individual unknown compo-
nent cause representing additional unknown components; an unknown sufficient
cause is added to the model consisting of a single unknown component cause and
representing all unknown sufficient causes.

34 sc_contain_steps

Value

A list of length 2 containing an object of class dagitty (named dag) and a data.frame containing
the information, which label in the DAG corresponds to which component cause (named legend).

References

VanderWeele TJ, Robins JM (2007): Directed acyclic graphs, sufficient causes, and the properties
of conditioning on a common effect. American Journal of Epidemiology 166 (9): 1096–1104.

See Also

• dagitty::dagitty()

• SCC models for more information on unknown causes and SCC models in general

• plot_dag() to create a ggplot object from dagitty model code

Examples

Create some SCC model
steplist_checked <- check_steplist(steplist_rain)
scc_model <- create_scc(steplist_checked)

Transform it into a DAG
scc_to_dag(scc_model)

sc_contain_steps Do steps appear in sufficient causes?

Description

Extracts from a SCC model, if certain steps are part of the mechanism of sufficient causes. If you
want a list of all steps, ignore argument steps.

Usage

sc_contain_steps(scc, steps = NULL, output = c("nice", "table"))

Arguments

scc An object of class epicmodel_scc.

steps A character vector containing step IDs. IF NULL (default), provides a list of all
steps.

output A single element of type character, either "nice" (default) or "table". If "table",
returns a list (or data.frame if steps = NULL). If "nice", a nicely formated output
is printed in the console.

show_steps 35

Value

Either a list (output = "table") with length equal to the number of sufficient causes and each element
being a named vector of TRUE/FALSE with the variables in steps as names and TRUE indicating
that the step appears in the corresponding sufficient cause, or a nicely formated output in the console
(output = "nice"). If steps = NULL and output = "table", returns a data.frame, which contains
variables id_step and desc_step from the epicmodel_steplist_checked data.frame step.

Examples

Create some SCC model
steplist_checked <- check_steplist(steplist_rain)
scc_model <- create_scc(steplist_checked)

Check if one or more steps are part of the mechanism for each sufficient cause
sc_contain_steps(scc_model, c("THENa1","THENa5"))

show_steps Show all steps of a SCC model

Description

Prints all steps that are part of a sufficient-component cause model. The function wraps sc_contain_steps()
with steps = NULL.

Usage

show_steps(scc, output = c("nice", "table"))

Arguments

scc An object of class epicmodel_scc.

output A single element of type character, either "nice" (default) or "table". If "table",
returns a data.frame. If "nice", a nicely formated output is printed in the console.

Value

Either a data.frame (output = "table") with variables id_step (step ID) and desc_step (step de-
scription) and one row for every step in the model, i.e., from the epicmodel_steplist_checked
data.frame step, or a nicely formated output in the console (output = "nice").

Examples

Create some SCC model
steplist_checked <- check_steplist(steplist_rain)
scc_model <- create_scc(steplist_checked)

Show all steps
show_steps(scc_model)

36 steplist_rain

steplist_party Birthday party example steplist

Description

An example steplist, which contains the steps that tell Clara, under which conditions her birthday
party will be a success.

Usage

steplist_party

Format

An object of class epicmodel_steplist, which is a list of 8 data.frames. See new_steplist() for
the detailed structure of epicmodel_steplist class objects.

steplist_rain Rain example steplist

Description

An example steplist, which contains a rain-themed example to illustrate intervention functions.

Usage

steplist_rain

Format

An object of class epicmodel_steplist, which is a list of 8 data.frames. See new_steplist() for
the detailed structure of epicmodel_steplist class objects.

uncheck_steplist 37

uncheck_steplist Unchecking epicmodel_steplist objects

Description

Putting a checked epicmodel_steplist back to an unchecked status.

Usage

uncheck_steplist(steplist)

Arguments

steplist An epicmodel_steplist or epicmodel_steplist_checked object.

Value

An object of class epicmodel_steplist.

Examples

x <- uncheck_steplist(scc_rain$steplist)

Index

∗ datasets
scc_rain, 33
steplist_party, 36
steplist_rain, 36

are_sufficient, 2

check_steplist, 3
check_steplist(), 5, 25, 30, 31
create_scc, 5
create_scc(), 3, 10, 11, 17, 19, 21, 25

dagitty::dagitty(), 28, 34
DiagrammeR::edge_aes(), 14, 15
DiagrammeR::export_graph, 9
DiagrammeR::export_graph(), 9
DiagrammeR::node_aes(), 14, 15

effect_size, 7
empty_scc (new_scc), 17
empty_steplist (new_steplist), 22
export_mechanism, 9
export_mechanism(), 15

intervene, 10
intervene(), 20, 21

launch_steplist_creator, 12
launch_steplist_creator(), 5, 22

mechanism, 13
mechanism(), 9

necessary_causes, 16
new_mechanism (mechanism), 13
new_scc, 17
new_scc(), 33
new_steplist, 22
new_steplist(), 36

plot.epicmodel_mechanism (mechanism), 13

plot.epicmodel_scc (new_scc), 17
plot.epicmodel_steplist (new_steplist),

22
plot.epicmodel_steplist_checked

(new_steplist), 22
plot_dag, 26
plot_dag(), 20, 21, 34
prevent, 29
print.epicmodel_mechanism (mechanism),

13
print.epicmodel_scc (new_scc), 17
print.epicmodel_steplist

(new_steplist), 22
print.epicmodel_steplist_checked

(new_steplist), 22

remove_all_modules, 30
remove_all_modules(), 25
remove_na, 31
remove_na(), 25
remove_segment, 31
remove_segment(), 25

sc_contain_steps, 34
sc_contain_steps(), 35
scc_cause_sets, 32
scc_rain, 33
scc_to_dag, 33
scc_to_dag(), 27, 28
show_steps, 35
Steplist, 7
steplist_party, 36
steplist_rain, 36
summary.epicmodel_scc (new_scc), 17
summary.epicmodel_steplist

(new_steplist), 22
summary.epicmodel_steplist_checked

(new_steplist), 22

uncheck_steplist, 37

38

INDEX 39

validate_mechanism (mechanism), 13
validate_scc (new_scc), 17
validate_steplist (new_steplist), 22

	are_sufficient
	check_steplist
	create_scc
	effect_size
	export_mechanism
	intervene
	launch_steplist_creator
	mechanism
	necessary_causes
	new_scc
	new_steplist
	plot_dag
	prevent
	remove_all_modules
	remove_na
	remove_segment
	scc_cause_sets
	scc_rain
	scc_to_dag
	sc_contain_steps
	show_steps
	steplist_party
	steplist_rain
	uncheck_steplist
	Index

