agghoo: Aggregated Hold-Out Cross Validation
The 'agghoo' procedure is an alternative to usual cross-validation.
    Instead of choosing the best model trained on V subsamples, it determines
    a winner model for each subsample, and then aggregates the V outputs.
    For the details, see "Aggregated hold-out" by Guillaume Maillard,
    Sylvain Arlot, Matthieu Lerasle (2021) <doi:10.48550/arXiv.1909.04890>
    published in Journal of Machine Learning Research 22(20):1–55.
| Version: | 
0.1-0 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
class, parallel, R6, rpart, FNN | 
| Suggests: | 
roxygen2, mlbench | 
| Published: | 
2023-05-25 | 
| DOI: | 
10.32614/CRAN.package.agghoo | 
| Author: | 
Sylvain Arlot [ctb],
  Benjamin Auder [aut, cre, cph],
  Melina Gallopin [ctb],
  Matthieu Lerasle [ctb],
  Guillaume Maillard [ctb] | 
| Maintainer: | 
Benjamin Auder  <benjamin.auder at universite-paris-saclay.fr> | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://git.auder.net/?p=agghoo.git | 
| NeedsCompilation: | 
no | 
| Materials: | 
README  | 
| CRAN checks: | 
agghoo results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=agghoo
to link to this page.