CBAModel: Stochastic 3D Structure Model for Binder-Conductive Additive
Phase
Simulation of the stochastic 3D structure model for the nanoporous binder-conductive additive phase in battery cathodes introduced in P. Gräfensteiner, M. Osenberg, A. Hilger, N. Bohn, J. R. Binder, I. Manke, V. Schmidt, M. Neumann (2024) <doi:10.48550/arXiv.2409.11080>. The model is developed for a binder-conductive additive phase of consisting of carbon black, polyvinylidene difluoride binder and graphite particles. For its stochastic 3D modeling, a three-step procedure based on methods from stochastic geometry is used. First, the graphite particles are described by a Boolean model with ellipsoidal grains. Second, the mixture of carbon black and binder is modeled by an excursion set of a Gaussian random field in the complement of the graphite particles. Third, large pore regions within the mixture of carbon black and binder are described by a Boolean model with spherical grains.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=CBAModel
to link to this page.