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There is a distinction between grobs which are just stored in user-level R objects and grobs
which represent drawn output (i.e., grobs on the grid display list). There is a naming
convention that grid.*() functions are (mainly) used for their side-effect of producing
output or modifying existing output (they create/affect grobs on the display list). Functions
of the form *Grob() are used for their return value; the grob that they create/modify. For
example, the following creates a grob and then modifies it, but performs absolutely no
drawing; this is purely manipulating a description of a graphical object.

> gl <- linesGrob()

> gl <- editGrob(gl, gp = gpar(col = "green"))

The next example produces output. A grob is returned, but that grob is just a description
of the output that was drawn and has no direct link to the output. It is possible to access
the grob representing the output by using the grob’s name. In order to access a grob which
represents drawn output (i.e., a grob on the display list), you must specify a gPath. The
gPath should be created using the gPath() function for writing scripts, but in interactive
use, it is possible to specify the gPath directly as a string. The code below shows both
approaches.

> grid.newpage()

> grid.lines(name = "lines")

> grid.edit(gPath("lines"), gp = gpar(col = "pink"))

> grid.edit("lines", gp = gpar(col = "red"))

Complex graphical objects are provided by the gTree class. A gTree is a grob which may
have other grobs as children. The xaxis and yaxis grobs provided by grid are examples
of gTrees; the children of an axis include a lines grob for the tick-marks and a text grob
for the tick-mark labels. The function childNames() can be used to list the names of the
children of a gTree. When dealing with these hierarchical objects, more complex gPaths
can be used to access children of a gTree. In the following example, an x-axis is drawn,
then the xaxis itself is edited to modify the locations of the tick-marks, then the xaxis’s text
child is edited to modify the location of the labels on the tick-marks.

> grid.newpage()

> pushViewport(viewport(w = .5, h = .5))
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> grid.rect(gp = gpar(col = "grey"))

> grid.xaxis(name = "myxaxis")

> grid.edit("myxaxis", at = 1:4/5)

> grid.edit(gPath("myxaxis", "labels"), y = unit(-1, "lines"))

>

This next example extends the idea a step further to edit the child of a child of a gTree. It
also shows the use of the gTree function to construct a simple gTree (this is just creating an
instance of the gTree class – it is also possible to extend the gTree class in order to provide
specialised behaviour for drawing and other things; more on this later). Finally, the example
demonstrates how gPaths of depth greater than 1 can be specified directly as a string.

> grid.newpage()

> pushViewport(viewport(w = .5, h = .5))

> myplot <-

+ gTree(name = "myplot",

+ children = gList(rectGrob(name = "box", gp = gpar(col = "grey")),

+ xaxisGrob(name = "xaxis")))

> grid.draw(myplot)

> grid.edit("myplot::xaxis", at = 1:10/11)

> grid.edit("myplot::xaxis::labels", label = round(1:10/11, 2))

> grid.edit("myplot::xaxis::labels", y = unit(-1, "lines"))

"grobwidth" units require a grob to give the width of. There are two ways to specify the
grob. The following example shows the most obvious method of simply supplying a grob.
Notice that if you modify gt it will have no effect on the width of the drawn rectangle.

> grid.newpage()

> gt <- grid.text("Hi there")

> grid.rect(width = unit(1, "grobwidth", gt))

In order to allow a "grobwidth" unit to track changes in the grob, it is possible to specify
a gPath rather than a grob as the data for a "grobwidth" unit. The following example
modifies the previous example to use a gPath. Now, the width of the rectangle changes
when the width of the underlying grob changes.

> grid.newpage()

> gt <- grid.text("Hi there", name = "sometext")

> grid.rect(width = unit(1, "grobwidth", "sometext"))

> grid.edit("sometext", label = "Something different")

One issue in the evaluation of "grobwidth" units involves establishing the correct “con-
text” for a grob when determining its width (if a grob has a viewport in its vp slot then
that viewport gets pushed before the grob is drawn; that viewport should also be pushed
when determining the width of the grob). To achieve this there are preDrawDetails(),
drawDetails(), and postDrawDetails() generic functions. (suggestions for better names
welcome!). The idea is that pushing and popping of viewports should occur in the pre
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and post generics, and any actual drawing happens in the main drawDetails() generic.
This allows the code that calculates a grob width to call the preDrawDetails() in order to
establish the context in which the grob would be drawn before calculating its width. The
following example shows a test case; a grob is created (extending to a new class to allow
specific methods to be written), and methods are provided which establish a particular con-
text for drawing the grob. These methods are used both in the drawing of the grob and in
the calculation of the grob’s width (when drawing a bounding rectangle).

> grid.newpage()

> mygrob <- grob(name = "mygrob", cl = "mygrob")

> preDrawDetails.mygrob <- function(x)

+ pushViewport(viewport(gp = gpar(fontsize = 20)))

> drawDetails.mygrob <- function(x, recording = TRUE)

+ grid.draw(textGrob("hi there"), recording = FALSE)

> postDrawDetails.mygrob <- function(x) popViewport()

> widthDetails.mygrob <- function(x) unit(1, "strwidth", "hi there")

> grid.draw(mygrob)

> grid.rect(width = unit(1, "grobwidth", mygrob))

This next example shows a slightly different test case where the standard preDrawDetails()
and postDrawDetails() methods are used, but the grob does have a vp slot so these
methods do something. Another interesting feature of this example is the slightly more
complex gTree that is created. The gTree has a childrenvp specified. When the gTree is
drawn, this viewport is pushed and then “up”ed before the children of the gTree are drawn.
This means that the children of the gTree can specify a vpPath to the viewport they should
be in. This allows the parent gTree to create a suite of viewports and then children of the
gTree select which one they want – this can be more efficient than having each child push
and pop the viewports it needs, especially if several children are drawn within the same
viewport. Another, more realistic example of this is given later.

> grid.newpage()

> mygtree <- gTree(name = "mygrob",

+ childrenvp = viewport(name = "labelvp",

+ gp = gpar(fontsize = 20)),

+ children = gList(textGrob("hi there", name = "label",

+ vp = "labelvp")),

+ cl = "mygtree")

> widthDetails.mygtree <- function(x)

+ unit(1, "grobwidth", getGrob(x, "label"))

> grid.draw(mygtree)

> grid.rect(width = unit(1, "grobwidth", mygtree))

Constructing a description of a frame grob must be done via packGrob() and placeGrob().
The following example shows the construction of a simple frame consisting of two equal-size
columns.

> grid.newpage()

> fg <- frameGrob(layout = grid.layout(1, 2))
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> fg <- placeGrob(fg, textGrob("Hi there"), col = 1)

> fg <- placeGrob(fg, rectGrob(), col = 2)

> grid.draw(fg)

This next example constructs a slightly fancier frame using packing.

> grid.newpage()

> pushViewport(viewport(layout = grid.layout(2, 2)))

> drawIt <- function(row, col) {

+ pushViewport(viewport(layout.pos.col = col, layout.pos.row = row))

+ grid.rect(gp = gpar(col = "grey"))

+ grid.draw(fg)

+ upViewport()

+ }

> fg <- frameGrob()

> fg <- packGrob(fg, textGrob("Hi there"))

> fg <- placeGrob(fg, rectGrob())

> drawIt(1, 1)

> fg <- packGrob(fg, textGrob("Hello again"), side = "right")

> drawIt(1, 2)

> fg <- packGrob(fg, rectGrob(), side = "right", width = unit(1, "null"))

> drawIt(2, 2)

In order to allow frames to update when the objects packed within them are modified,
there is a dynamic argument to packGrob() (and grid.pack()). The following extends the
previous example to show how this might be used. Another feature of this example is the
demonstration of “non-strict” searching that occurs in the grid.edit() call; the grob called
"midtext" is not at the top-level, but is still found. Something like grid.get("midtext",
strict = TRUE) would fail.

> grid.newpage()

> fg <- frameGrob()

> fg <- packGrob(fg, textGrob("Hi there"))

> fg <- placeGrob(fg, rectGrob())

> fg <- packGrob(fg, textGrob("Hello again", name = "midtext"),

+ side = "right", dynamic = TRUE)

> fg <- packGrob(fg, rectGrob(), side = "right", width = unit(1, "null"))

> grid.draw(fg)

> grid.edit("midtext", label = "something much longer")

There have been a few examples already which have involved creating a gTree. This next
example explicitly demonstrates this technique. A gTree is created with two important
components. The childrenvp is a vpTree consisting of a "plotRegion" viewport to pro-
vide margins around a plot and a "dataRegion" viewport to provide x- and y-scales. The
"dataRegion" gets pushed within the "plotRegion" and both are pushed and then “up”ed
before the children are drawn. The children of the gTree are an xaxis and a yaxis both
drawn within the "dataRegion", and a rect drawn around the border of the "plotRegion".
A further feature of this example is the use of the addGrob() and removeGrob() functions
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to modify the gTree. The first modification involves adding a new child to the gTree which
is a set of points drawn within the "dataRegion". The second modification involves adding
another set of points with a different symbol (NOTE that this second set of points is given
a name so that it is easy to identify this set amongst the children of the gTree). The final
modification is to remove the second set of points from the gTree.

> grid.newpage()

> pushViewport(viewport(layout = grid.layout(2, 2)))

> drawIt <- function(row, col) {

+ pushViewport(viewport(layout.pos.col = col, layout.pos.row = row))

+ grid.rect(gp = gpar(col = "grey"))

+ grid.draw(gplot)

+ upViewport()

+ }

> gplot <- gTree(x = NULL, y = NULL,

+ childrenvp = vpTree(

+ plotViewport(c(5, 4, 4, 2), name = "plotRegion"),

+ vpList(viewport(name = "dataRegion"))),

+ children = gList(

+ xaxisGrob(vp = "plotRegion::dataRegion"),

+ yaxisGrob(vp = "plotRegion::dataRegion"),

+ rectGrob(vp = "plotRegion")))

> drawIt(1, 1)

> gplot <- addGrob(gplot, pointsGrob(vp = "plotRegion::dataRegion"))

> drawIt(1, 2)

> gplot <- addGrob(gplot, pointsGrob(name = "data1", pch = 2,

+ vp = "plotRegion::dataRegion"))

> drawIt(2, 1)

> gplot <- removeGrob(gplot, "data1")

> drawIt(2, 2)

This next example provides a simple demonstration of saving and loading grid grobs. It is
also a nice demonstration that grobs copy like normal R objects.

> gplot <- gTree(x = NULL, y = NULL,

+ childrenvp = vpTree(

+ plotViewport(c(5, 4, 4, 2), name = "plotRegion"),

+ vpList(viewport(name = "dataRegion"))),

+ children = gList(

+ xaxisGrob(vp = "plotRegion::dataRegion"),

+ yaxisGrob(vp = "plotRegion::dataRegion"),

+ rectGrob(vp = "plotRegion")))

> save(gplot, file = "gplot1")

> gplot <- addGrob(gplot, pointsGrob(vp = "plotRegion::dataRegion"))

> save(gplot, file = "gplot2")

> grid.newpage()

> pushViewport(viewport(layout = grid.layout(1, 2)))

> pushViewport(viewport(layout.pos.col = 1))

> load("gplot1")
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> grid.draw(gplot)

> popViewport()

> pushViewport(viewport(layout.pos.col = 2))

> load("gplot2")

> grid.draw(gplot)

> popViewport()

This next example just demonstrates that it is possible to use a gPath to access the children
of a gTree when editing. This is the editGrob() equivalent of an earlier example that used
grid.edit(). One useful application of this API is the ability to modify the appearance of
quite precise elements of a large, complex graphical object by editing the gp slot of a child
(of a child . . . ) of a gTree.

> myplot <- gTree(name = "myplot",

+ children = gList(

+ rectGrob(name = "box", gp = gpar(col = "grey")),

+ xaxisGrob(name = "xaxis")))

> myplot <- editGrob(myplot, gPath = "xaxis", at = 1:10/11)

> myplot <- editGrob(myplot, gPath = "xaxis::labels", label = round(1:10/11, 2))

> myplot <- editGrob(myplot, gPath = "xaxis::labels", y = unit(-1, "lines"))

> grid.newpage()

> pushViewport(viewport(w = .5, h = .5))

> grid.draw(myplot)

>

The following example demonstrates the use of the getGrob() and grid.get() (along with
gPaths) to access grobs.

> myplot <- gTree(name = "myplot",

+ children = gList(

+ rectGrob(name = "box", gp = gpar(col = "grey")),

+ xaxisGrob(name = "xaxis")))

> getGrob(myplot, "xaxis")

> myplot <- editGrob(myplot, gPath="xaxis", at=1:10/11)

> getGrob(myplot, "xaxis::labels")

> grid.newpage()

> pushViewport(viewport(w=.5, h=.5))

> grid.draw(myplot)

> grid.get("myplot")

> grid.get("myplot::xaxis")

> grid.get("myplot::xaxis::labels")

There is also an API for (re)setting children of a gTree or any drawn grob. This is not
intended for general user use, but provides a simple way for developers to perform modifi-
cations to the structure of a gTree by doing something like . . .

grob <- getGrob(<spec>)
<modify grob>
setGrob(<spec>, grob)
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This approach is used in the implementation of packing and placing grobs. The following
example shows some simple usage of the setGrob() and grid.set() functions to replace
children of a gTree with different grobs. NOTE that currently such replacement can only
occur if the name of the new grob is the same as the name of the old grob.

> myplot <- gTree(name = "myplot",

+ children = gList(rectGrob(name = "box", gp = gpar(col = "grey")),

+ xaxisGrob(name = "xaxis")))

> myplot <- setGrob(myplot, "xaxis", rectGrob(name = "xaxis"))

> grid.newpage()

> pushViewport(viewport(w = .5, h = .5))

> grid.draw(myplot)

> grid.set("myplot::xaxis", xaxisGrob(name = "xaxis", at = 1:3/4))

> grid.set("myplot::xaxis::labels",

+ textGrob(name = "labels", x = unit(1:3/4, "native"),

+ y = unit(-1, "lines"), label = letters[1:3]))

> myplot <- setGrob(grid.get("myplot"), "xaxis::labels",

+ circleGrob(name = "labels"))

> grid.newpage()

> pushViewport(viewport(w = .5, h = .5))

> grid.draw(myplot)

This next example just shows more complex use of the add/remove facilities for modifying
grobs. Again, addGrob() and removeGrob() are for constructing descriptions of graphical
objects and grid.add() and grid.remove() are for modifying drawn output. Of particular
note are the last two lines involving grid.remove(). The first point is that there are multiple
grobs on the display list with the same name. The example only affects the first one it finds;
this could easily be extended to affect the display list “globally” (for children of gTrees,
there cannot be multiple children with the same name so the issue does not arise). The last
line is interesting because it actually erases the grob named "plot1" from the display list
altogether (well, the first instance on the display list of a grob called "plot1" anyway).

> drawIt <- function(row, col) {

+ pushViewport(viewport(layout.pos.col = col, layout.pos.row = row))

+ grid.rect(gp = gpar(col = "grey"))

+ grid.draw(gplot)

+ upViewport()

+ }

> gplot <- gTree(name = "plot1",

+ childrenvp = vpTree(

+ plotViewport(c(5, 4, 4, 2), name = "plotRegion"),

+ vpList(viewport(name = "dataRegion"))),

+ children = gList(

+ xaxisGrob(name = "xaxis", vp = "plotRegion::dataRegion"),

+ yaxisGrob(name = "yaxis", vp = "plotRegion::dataRegion"),

+ rectGrob(name = "box", vp = "plotRegion")))

> grid.newpage()

> pushViewport(viewport(layout = grid.layout(2, 2)))

> drawIt(1, 1)
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> grid.add("plot1", pointsGrob(0.5, 0.5, name = "data1",

+ vp = "plotRegion::dataRegion"))

> grid.add("plot1::xaxis",

+ textGrob("X Axis", y = unit(-2, "lines"), name = "xlab"))

> grid.edit("plot1::xaxis::xlab", y = unit(-3, "lines"))

> gplot <- grid.get("plot1")

> gplot <- addGrob(gplot, gPath = "yaxis",

+ textGrob("Y Axis", x = unit(-3, "lines"), rot = 90,

+ name = "ylab"))

> drawIt(1, 2)

> gplot <- removeGrob(gplot, "xaxis::xlab")

> drawIt(2, 1)

> grid.remove("plot1::data1")

> grid.remove("plot1")

The next example is just a grid.place() and grid.pack() equivalent of an earlier example
involving placeGrob() and packGrob(). The interesting feature is that each action is
reflected in the output as it occurs.

> grid.newpage()

> grid.frame(name = "myframe", layout = grid.layout(1, 2))

> grid.place("myframe", textGrob("Hi there"), col = 1)

> grid.place("myframe", rectGrob(), col = 2)

> grid.newpage()

> grid.frame(name = "frame2")

> grid.pack("frame2", textGrob("Hi there"))

> grid.place("frame2", rectGrob())

> grid.pack("frame2", textGrob("Hello again"), side = "right")

> grid.pack("frame2", rectGrob(), side = "right", width = unit(1, "null"))
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